УДК 550.344+550.34

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ВАРИАЦИИ ПОЛЯ ПОГЛОЩЕНИЯ КОРОТКОПЕРИОДНЫХ S-BOЛH В РАЙОНЕ ГИНДУКУША И ИХ СВЯЗЬ С СЕЙСМИЧНОСТЬЮ

© 2018 г. Ю. Ф. Копничев^{1,} *, И. Н. Соколова^{2,} **

¹Институт физики Земли им. О.Ю. Шмидта РАН Россия, 123242 Москва, ул. Большая Грузинская, 10, стр. 1 ²Институт геофизических исследований МЭ РК Казахстан, 050020 Алма-Ата, ул. Чайкиной, 4 *e-mail: yufk777@mail.ru **e-mail: sokolova@kndc.kz Поступила в редакцию 07.05.2016 г.

Исследуются пространственно-временные вариации поля поглощения поперечных волн в районе Гиндукуша. Рассматривались отношения максимальных амплитуд в волнах S и P (параметр S/P) по записям глубокофокусных землетрясений, полученным станцией ААК в 1993–2016 гг. на эпицентральных расстояниях ~700–800 км. Для учета зависимости амплитуд от диаграмм направленности излучения P- и S-волн проводилось осреднение величин S/P в различных интервалах времени. Установлено, что в зоне глубокофокусной сейсмичности имели место существенные пространственно-временные вариации поглощения S-волн в разных диапазонах глубин. Показано, что в 2013–2015 гг., перед сильнейшим землетрясением 26.10.2015 г. ($M_w = 7.5$, h = 231 км) самое слабое поглощение наблюдалось для гипоцентров, расположенных над очаговой зоной, на глубинах 151–210 км, а самое высокое – на глубинах 231–270 км. После землетрясения поглощение резко уменьшилось на глубинах 231–270 км и увеличилось в диапазоне глубин 191–230 км. Предполагается, что обнаруженные эффекты связаны с процессами дегидратации мантийных пород, а также миграции глубинных флюидов.

DOI: 10.1134/S0203030618060056

введение

Изучению природы гиндукушской зоны глубокофокусной сейсмичности посвящено значительное количество публикаций [Roecker et al., 1980; Roecker, 1982; Pegler, Das, 1998 и др.]. Построены разрезы полей скоростей Р- и S-волн до глубин ~250 км, выявлена существенная горизонтальная неоднородность этих полей [Roecker, 1982]. Исследовано пространственное распределение очагов глубокофокусных землетрясений [Roecker et al., 1980; Roecker, 1982; Pegler, Das, 1998], установлена связь сильнейших глубокофокусных и сильных коровых событий в обширном регионе Центральной и Южной Азии [Копничев и др., 2002]. Вместе с тем следует признать, что вопрос о природе зоны глубокофокусной сейсмичности далек от окончательного решения. Для ответа на него необходимо привлекать дополнительные сейсмические и геофизические данные. В настоящей работе с этой целью рассматриваются характеристики поля поглощения S-волн в зоне глубокофокусных землетрясений и проводится их сопоставление с элементами сейсмичности.

Особое внимание уделяется анализу пространственно-временных вариаций поля поглощения в очаговой зоне недавнего сильнейшего землетрясения 26.10.2015 г. ($M_w = 7.5$) и ее близких окрестностях.

ИСТОРИЧЕСКАЯ СЕЙСМИЧНОСТЬ

Глубокофокусная сейсмичность в районе Гиндукуша сконцентрирована в диапазоне глубин ~70-300 км [Pegler, Das, 1998]. В табл. 1 представлены данные о землетрясениях с $M \ge 7.0$, произошедших с начала XX в. Из табл. следует, что за 115 лет здесь произошло 12 таких событий. При этом с 1965 по 2002 гг. они происходили регулярно с периодичностью около 9 лет. После 2002 г. эта периодичность нарушилась; очередное сильное землетрясение с $M_w = 7.5$ в районе Гиндукуша произошло 26 октября 2015 г. (см. табл. 1).

На рис. 1 показано распределение по глубине количества сильных глубокофокусных (h > 100 км) землетрясений в районе Гиндукуша начиная с 1973 г., когда глубины определялись с относи-

Дата	°N	°E	<i>h</i> , км	М	
24.10.1908	36.5	70.5	220	7.0	
07.07.1909	36.5	70.5	230	7.6	
04.07.1911	36.0	70.5	190	7.4	
15.11.1921	36.12	70.72	152	7.6	
01.02.1929	36.46	70.93	208	7.0	
04.03.1949	36.0	70.5	230	7.4	
14.03.1965	36.40	70.71	210	7.5	
30.07.1974	36.37	70.73	210	7.1	
30.12.1983	36.39	70.71	215	7.4	
29.07.1985	36.16	70.86	100	7.4	
09.08.1993	36.33	70.87	211	7.0	
03.03.2002	36.50	70.48	225	7.4	
26.10.2015	36.53	70.36	231	7.5	

Таблица 1. Параметры землетрясений с *M* ≥ 7.0 с 1900 г. в районе Гиндукуша

тельно высокой точностью. Из рис. 1 и табл. 1 следует, что 11 событий с $M \ge 6.5$ произошли на глубинах 181–231 км; при этом гипоцентры всех пяти землетрясений с $M \ge 7.0$ попали в сравнительно узкий диапазон h = 210-231 км. Интересно, что эпицентры только 2 из 11 событий расположены к западу от 70.5° Е и оба они произошли после 2001 г. (рис. 2). Эпицентры остальных землетрясений находились к востоку от 70.7° Е.

Такое распределение событий по глубине во внутриконтинентальном районе существенно отличается от распределения в различных зонах субдукции, где количество землетрясений и их суммарная энергия, как правило, монотонно убывают с глубиной до $h \sim 300$ км [Калинин и др., 1989; Левин, Сасорова, 2012].

Рис. 1. Гистограмма распределения по глубине количества сильных землетрясений ($M \ge 6.5$) в районе Гиндукуша.

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 6 2018

На рис. 3 показано положение афтершоков землетрясения 26.10.2015 г., зарегистрированных в течение 1 мес. Афтершоки формируют компактную область размером ~30 км, вытянутую в субширотном направлении. Глубины их гипоцентров варьируются от 190 до 219 км, при этом большинство событий (30 из 37) находится в диапазоне глубин 190-210 км. Интересно, что облако афтершоков расположено заметно выше гипоцентра главного события. Следует отметить, что за 4 мес. после землетрясения 26.10.2015 г. зарегистрировано аномально большое количество глубокофокусных событий с $M \ge 4.0$ в диапазоне глубин 150-270 км (*n* = 78, включая "отдаленные" афтершоки в области между 70° и 72° Е). Для сравнения заметим, что в течение 4 мес. после сильных землетрясений 09.08.1993 г. (*M*_w = 7.0) и 03.03.2002 г. $(M_w = 7.4)$ произошло всего лишь 9 и 17 таких событий соответственно. Столь большое число афтершоков позволило детально проанализировать изменение характеристик поля поглощения в очаговой области и ее близких окрестностях после Гиндукушского землетрясения 26.10.2015 г.

СИСТЕМА НАБЛЮДЕНИЙ И ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Анализировались записи гиндукушских землетрясений в диапазоне глубин 150—270 км, полученные станцией Ала-Арча (ААК) в 1993—2016 гг. (рис. 4). Магнитуды землетрясений находились в диапазоне 4.0—6.0, эпицентральные расстояния варьировались от 700 до 800 км. В общей сложности обработано более 800 записей.

Рассматриваемый диапазон глубин был разбит на четыре слоя: 151–190, 191–210, 211–230 и 231– 270 км. Отметим, что для трех верхних слоев гипоцентры распределялись по глубине достаточно равномерно, в то время как для нижнего слоя более 80% событий происходили на глубинах 231– 250 км. Исходя из положения и размеров афтершоковой зоны землетрясения 26.10.2015 г., мы разделили рассматриваемый объем на три области, одна из которых (центральная, между 70.20° и 70.55° E) в плане практически совпадает с указанной зоной. Две другие области (69.80–70.20° E и 70.55–71.30° E) располагались соответственно к западу и востоку от зоны афтершоков.

МЕТОДИКА

Для учета зависимости добротности от частоты колебаний проводилась узкополосная фильтрация вертикальных компонент записей (использовался фильтр с центральной частотой 1.25 Гц и полосой пропускания 2/3 октавы на уровне 0.7 от максимума [Копничев, 1985]).

Измерялись отношения максимальных амплитуд в Р- и S-волнах (параметр lg(AS/AP), ко-

Рис. 2. Эпицентры сильных землетрясений ($M \ge 6.5$), произошедших на глубинах h > 100 км начиная с 1973 г. 1 - M = 6.5 - 6.9; $2 - M \ge 7.0$; 3 - крупные города.

торый для краткости будем обозначать как S/P). Очевидно, что увеличение параметра S/P при прочих равных условиях соответствует уменьшению эффективного поглощения короткопериодных поперечных волн и наоборот [Копничев, Соколова, 2007].

Следует заметить, что на уровень параметра S/P существенно влияют диаграммы направленности излучения S- и P-волн, а также неоднородности поля поглощения в области регистрирующей станции [Копничев, Соколова, 2007]. Для учета роли первого фактора мы проводили осреднение параметров S/P в каждом диапазоне глубин. Чаще всего осреднялись данные за один или два года, реже — за большие интервалы времени (в зависимости от количества сейсмограмм). Отметим, что осреднение данных за 2015 г. проводилось отдельно за периоды до 25 октября (для форшоков сильного землетрясения) и начиная с 26 октября (для афтершоков).

Роль второго фактора состоит в том, что при использовании записей одной и той же станции для гипоцентров на разных глубинах лучи могут проходить разные отрезки пути в некоторой неоднородности высокого поглощения. Согласно полученным ранее данным, зоны наиболее высокого поглощения S-волн в районе Центрального Тянь-Шаня, как правило, находятся в нижней коре, на глубинах ~30–50 км [Копничев, Соколова, 2003; Земная кора ..., 2006]. Здесь же распола-

Рис. 3. Расположение афтершоков землетрясения 26.10.2015 г. (в плане).

 $1 - M = 4.0 - 4.4; 2 - M \ge 4.5; 3 - эпицентр землетря$ сения 26.10.2015 г.; 4 - крупные города.

Рис. 4. Карта района исследований. 1 — сейсмическая станция; 2 — очаговая область; 3 — крупные города.

гаются и области самой высокой проводимости по данным МТЗ [Bielinski et al., 2003]. В обоих случаях эти эффекты связываются с присутствием заметной доли свободных флюидов. Для оценки роли второго фактора рассмотрим смещение лучей на границе М от источников на разных глубинах. Примем для определенности простейшую двухслойную модель среды с толщиной коры hk = 50 км и скоростями S-волн в коре и верхах мантии соответственно 3.5 и 4.6 км/с. В табл. 2 указаны величины сноса лучей в коре для очагов, расположенных на разных глубинах. Из таблицы следует, что для эпицентров, расположенных в серединах самого верхнего и самого нижнего сло-

Таблица 2. Оценка смещения лучей на границе *M* от гиндукушских землетрясений с разными глубинами очагов

<i>h</i> , км	ik°	rk, км	lk, км
170	48.3	56.1	75.0
200	47.7	54.9	74.3
220	47.3	54.2	73.7
250	46.5	52.6	72.6

Примечание. ik – угол луча с вертикалью (в коре), rk – снос луча в коре, lk – длина отрезка луча в коре.

ев, расхождение лучей на границе M (rk) составляет ~3.5 км. В то же время радиус зоны Френеля Rf = $\sqrt{(lk\lambda)}$ (lk – длина отрезка трассы, проходимой лучем в коре, λ – длина волны) составляет ~15 км. Отсюда следует, что величина отношения rk/Rf \leq 1, поэтому можно считать, что неоднородности поля поглощения в нижней коре не приводят к существенным различиям параметра S/P для разных глубин очагов (при прочих равных условиях).

АНАЛИЗ ДАННЫХ

На рис. 5 представлены примеры типичных записей землетрясений, полученных в афтершоковой зоне землетрясения 26.10.2015 г. и ее близких окрестностях в 2013—2015 гг. (до этого события). Видно, что для события в нижнем слое наблюдается очень низкий относительный уровень S-волны, а для землетрясения во втором слое — достаточно высокий. Записи событий в первом и третьем слоях характеризуются промежуточными величинами параметра S/P.

Для удобства изложения рассмотрим временные вариации параметра S/P, начиная с нижнего слоя. На рис. 6 показаны зависимости параметра S/P от времени для этого слоя (для краткости обозначим его как S/P250, здесь и ниже индекс соответствует средней глубине диапазона). Доверительные интервалы для средних значений на уровне 0.7 варьируются от 0.04 до 0.18. Видно, что для западной и центральной областей (69.80°-70.55° Е) средние величины S/P250 резко уменьшаются со временем (от 0.48 в 1996-2000 гг. до 0.02 в 2005-2014 гг.). Вместе с тем для восточной области (между 70.55° и 71.30° Е) вариации параметра S/P250 значительно более слабые (от 0.09 в 1994—1995 гг. до 0.32 в 2015 г). При этом для событий, произошедших в 2015 г., средняя величина S/P250 выходит за пределы интервала $\pm \sigma$, полученного по данным за 1994-2014 гг. В то же время для афтершоков землетрясения 26.10.2015 г. величина S/P250 резко возрастает до 0.64, выходя за границы интервала $\pm 5\sigma$.

Рис. 7 иллюстрирует зависимости параметра S/P220 от времени для диапазона глубин 211–230 км. На западе, где все данные получены для области 70.0° –70.2°, относительно высокий уровень средних значений параметра наблюдается в 1995–2004 гг. (до 0.56), после чего величина S/P220 падает до 0.24 в 2013–2015 гг. В очаговой области (70.20°–70.55° Е) величины S/P220 сравнительно мало варьируются в 1994–2005 гг. (между 0.29 и 0.43), а далее падают до 0.20–0.29 в 2008–2012 и 2013–1015 гг. Важно отметить, что по данным для афтершоков землетрясения 26.10.2015 г. величина S/P220 в области очага резко увеличивается (до 0.66, что выходит за пределы интервала ±4 σ). На востоке величины S/P220 в целом значительно

Рис. 5. Примеры сейсмограмм глубокофокусных гиндукушских землетрясений. Ст. ААК, канал 1.25 Гц. a - 01.03.2014 г, 36.60° N , 70.49° E , h = 250 км; 6 - 11.05.2015 г., 36.49° N , 70.30° E , h = 212 км; B - 29.07.2013 г., 36.50° N , 70.54° E , h = 207 км; $\Gamma - 10.08.2015 \text{ г}$., 36.50° N , 70.45° E , h = 155 км.

Рис. 6. Временные вариации параметра S/P250.

а – западная и центральная области, б – восточная область. Здесь и ниже – показаны средние значения и доверительные интервалы на уровне 0.7. Горизонтальные риски – интервалы осреднения данных. Залитый значок – данные по афтершокам_землетрясения 26.10.2015 г.

ниже, чем на западе и в центре (вариации от 0.03 до 0.29). Интересно, что по данным для афтершоков землетрясения 26.10.2015 г. параметр S/P220 заметно упал (на 0.18), выходя за границы интервала $\pm \sigma$.

На рис. 8 представлены зависимости от времени параметра S/P200. В данном случае удалось получить достаточное количество данных только для центральной и восточной областей. Для центральной области наблюдается очень высокий уровень параметра S/P200, который, по данным до 26.10.2015 г. варьируется от 0.56 до 0.72. Отметим, что для афтершоков сильного землетрясения величина параметра возрастает до 0.78. Для восточной области уровень величины S/P200 значительно ниже — в целом имеют место вариации от 0.19 до 0.39, а для афтершоков землетрясения 26.10.2015 г. эта величина падает даже до 0.06, что выходит за границы интервала $\pm 3\sigma$.

На рис. 9 показаны зависимости от времени параметра S/P170 (для самого верхнего рассмотренного диапазона глубин). Для западной области удалось оценить среднюю величину параметра только за 2001–2013 гг. (S/P170 = 0.32 ± 0.13). Для центральной области (см. рис. 9а) величины S/P170 значительно выше (варьируются от 0.45 до 0.57). Больше всего данных получено для восточной области. Из рис. 96 следует, что величины параметра S/P170 здесь существенно ниже, чем в центральной области – они изменяются от 0.20 до 0.42. Интересно, что в данном случае величина S/P после землетрясения 26.10.2015 не выходит за пределы интервала $\pm \sigma$. Отметим, что для обеих областей в пределах двух верхних слоев не наблюдается

Рис. 7. Временные вариации параметра S/P220. а – западная, б – центральная, в – восточная области.

значительного падения величин S/P перед этим событием (в отличие от слоев 211–230 и 231–270 км).

На рис. 10 представлена схема поля поглощения S-волн в рассматриваемом районе в диапазоне глубин 151–270 км. Схема построена в основном по данным за 2013–2015 гг., но в двух случаях (для западной и центральной областей на глубинах 231-270 км и центральной на глубинах 151-190 км за большие интервалы времени). Весь диапазон вариаций средних значений параметра S/P разбит на три уровня, соответствующие повышенному (S/P = 0.00 - 0.10), промежуточному (S/P = 0.20 - 0.10)(0.40) и пониженному (S/P = 0.45-0.70) поглощению поперечных волн. Из рис. 10 следует, что перед землетрясением 26.10.2015 г. поле поглошения в зоне глубокофокусной сейсмичности характеризовалось существенной неоднородностью. В восточной области во всем рассматриваемом диапазоне глубин, а также в западной и центральной на глубинах 211-230 км наблюдалось промежуточное поглошение. В то же время в центральной области диапазону глубин 151-210 км соответствовало существенно пониженное поглощение. Повышенное поглощение имело место только в западной и центральной областях на глубинах 231-270 км. Наибольший контраст параметра наблюдался в центральной области между вторым (S/P200 = 0.65) и третьим (S/P220 = 0.29) слоями. Отсюда следует, что гипоцентр сильного землетрясения 26.10.2015 г. располагался в области высокого поглощения, а большинство афтершоков – в области пониженного поглошения.

На рис. 11 представлена схема поля поглощения в рассматриваемой области по данным для афтершоков землетрясения 26.10.2015 г., произошедших с 26.10.2015 г. по 31.03.2016 г. Из рис. следует, что в центральной области на всех глубинах наблюдалось пониженное поглощение. В то же время в восточной области в верхнем и нижнем слоях имело место, соответственно, промежуточное и пониженное, а в двух центральных - повышенное поглощение. Сопоставление рис. 10 и 11 показывает, что после землетрясения 26.10.2015 г. поглощение S-волн резко уменьшилось в центральной и восточной областях на глубинах соответственно 211-270 и 231-270 км и, наоборот, увеличилось в восточной области на глубинах 191-230 км.

Полученные данные свидетельствуют о том, что средние величины S/P в 2013–2015 гг. были минимальными для диапазона глубин 231–270 км, а максимальными – для диапазона 151–210 км. Вместе с тем временные вариации величин S/P значительно сильнее для нижней половины рассматриваемого разреза (h = 211-270 км), чем для верхней.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Таким образом, установлены существенные пространственно-временные вариации параметров S/P для гиндукушских землетрясений в разных диапазонах глубин. Заметим, что такие вариации в малой степени обусловлены особенностями диаграмм направленности излучения P- и S-волн, поскольку мы проводили осреднение данных для

Рис. 8. Временные вариации параметра S/P200. а – центральная, б – восточная области.

каждого отрезка времени. В связи с этим можно полагать, что наиболее естественное (если не единственное) объяснение обнаруженных эффектов связано с вариациями содержания жидкой фазы на трассах от очагов до станций. (Как известно, всего лишь 1% объемного содержания жидкой фазы может приводить к уменьшению скоростей S-волн на 10% и резкому увеличению поглощения [Hammond, Humpreys, 2000]). Отметим, что временные вариации поля поглошения в рассматриваемых случаях могут быть связаны только с изменением доли флюида, а не частичного расплава, поскольку вязкость расплавов на много порядков больше вязкости флюидов. При этом изменение доли флюидов может происходить как в очаговой области (в результате процессов их миграции, а также гидратации и дегидратации мантийных пород [Rauleigh, Paterson, 1965; Калинин и др., 1989; Yamasaki, Seno, 2003; Jung et al., 2004]), так и в нижней коре и верхах мантии в области регистрирующей станции [Копничев, Соколова, 2007].

В работах [Копничев, Соколова, 2003; Земная кора ..., 2006] было показано, что наиболее сильные временные вариации поля поглощения в районе Северного Тянь-Шаня, где расположена станция, наблюдаются в нижней коре. Полученные выше оценки говорят о том, что в области регистрирующей станции для разных диапазонов глубин очагов зоны Френеля на границе М в значительной степени перекрываются. Отсюда следует, что если бы вариации параметра S/P были следствием изменения доли флюидов главным

Рис. 10. Карта поля поглощения в области Гиндукуша (данные за 01.01.2013–25.10.2015 гг.). 1–3 – поглощение (1 – повышенное, 2 – промежуточное, 3 – пониженное); 4 – гипоцентр землетрясения 26.10.2015 г.; 5 – предполагаемые направления миграции флюидов.

образом в нижней коре в области станции, то они были бы практически синхронными для разных областей в очаговой зоне. В то же время из приведенных данных следует, что корреляция параметров S/P для разных слоев отсутствует. Кроме того, в ряде случаев наблюдается резкое изменение этих величин сразу после землетрясения 26.10.2015 г., которое произошло на эпицентральном расстоянии ~770 км от станции AAK. Таким образом, в нашем случае основные вариации параметров S/P связаны с изменением содержания флюидов непосредственно в зоне глубокофокусной сейсмичности.

Рис. 11. Карта поля поглощения в области Гиндукуша (данные за 26.10.2015—31.03.2016 гг.). Условные обозначения см. рис. 10.

Отметим, что вариации параметров S/P можно разделить на сравнительно медленные и быстрые. Медленные вариации наблюдались в течение промежутков времени от нескольких до 10-20 лет, они были связаны в основном с постепенным увеличением поглощения. При этом наибольшее падение величин S/P имело место в самом нижнем слое, в области между 69.8° и 70.55° Е. В то же время быстрые вариации параметра (в течение нескольких мес.) зарегистрированы для афтершоков землетрясения 26.10.2015 г.; они проявлялись как в увеличении поглощения (главным образом в восточной области, на глубинах 191-230 км), так и в его уменьшении (в центральной и восточной областях, на глубинах соответственно 211-270 и 231-270 км).

Можно полагать, что медленное увеличение поглощения (в первую очередь в двух нижних слоях) было обусловлено дегидратацией высокоплотных гидросиликатов, которая приводит к выделению свободной воды [Rauleigh, Paterson, 1965; Калинин и др., 1989; Родкин, 1993; Yamasaki, Seno, 2003; Jung et al., 2004]. Важно подчеркнуть, что дегидратация сопровождается охрупчиванием коровых и мантийных пород, эти процессы широко развиты в зонах субдукции [Yamasaki, Seno, 2003; Jung et al., 2004]. Естественно предположить, что именно этот эффект и привел к реализации сильного землетрясения 26.10.2015 г.

Заметим также, что при дегидратации возможно постепенное формирование связной сети пор и трещин, заполненных флюидом. В этом случае на кровле двухфазного слоя, в котором существует такая сеть, будет наблюдаться концентрация напряжений [Каракин, Лобковский, 1982; Gold, Soter, 1984/1985], что также может существенно облегчить подвижку при землетрясении.

Вместе с тем быстрые вариации поглощения для афтершоков этого события, скорее всего, связаны с эффектами "сейсмического насоса" (seismic pumping [Sibson et al., 1975; Main et al., 2012]), а также увеличения проницаемости в результате вибрации при сильном землетрясении и большом количестве повторных толчков. Эффект сейсмического насоса заключается во впрыскивании флюидов в области относительного растяжения. В рассматриваемых случаях такие области появляются при генерации сейсмических волн большой амплитулы, распространяющихся при сильном событии вблизи от очаговой зоны. Подобные явления наблюдаются, в частности, на достаточно больших расстояниях от очагов сильных землетрясений при прохождении низкочастотных поверхностных волн [Miyazawa, Brodsky, 2008]). Увеличение проницаемости при длительной вибрации имеет место даже в модельных экспериментах [Барабанов и др., 1987], тем более его можно ожидать на относительно больших глубинах в верхней мантии, где архимедова сила стремится выдавить вверх легкие флюиды.

Полученные данные показывают, что после землетрясения 26.10.2015 г. флюиды, скорее всего, перетекли из нижнего слоя, а также центральной области слоя на глубинах 211-230 км во второй и третий слои восточной области. Это позволяет объяснить синхронные вариации параметра S/P разного знака в соответствующих областях. Возможность более легкого поступления дополнительной порции флюидов в восточную область после землетрясения 26.10.2016 г., скорее всего, связана с присутствием здесь заметной доли жидкой фазы еще до этого события. Очевидно, что при распространении сейсмических волн флюидам гораздо легче переместиться в разломные зоны или трещины, уже заполненные жидкой фазой. В этой связи отметим, что в восточной области на глубинах 190-230 км расположено подавляющее большинство очагов сильных землетрясений, произошелших за последние 40 лет (см. рис. 2). Можно полагать, что относительно высокое поглощение, имевшее место в этой области перед событием 26.10.2015 г., обусловлено эффектом подъема флюидов после девяти сильных землетрясений, зарегистрированных здесь после 1973 г.

В то же время флюиды, очевидно, не смогли в значительных количествах проникнуть снизу в центральную область второго слоя. Возможно, это было связано с преобладанием в этой области гидратированных пород (как правило, характеризующихся пониженной вязкостью [Калинин и др., 1989]). В этой связи существенно то, что в данной области в 1973–2014 гг. произошло всего одно сильное землетрясение, которое, видимо, не смогло заметно увеличить долю флюидов в слое на глубинах 190—210 км. По этой причине центральная область на таких глубинах служила слабопроницаемой перегородкой, которая не позволяла флюидам подниматься выше.

Вместе с тем можно предполагать, что сильное землетрясение 26.10.2015 г. инициировало процессы дегидратации мантийных пород в этой области, связанные с их охрупчиванием, что позволяет объяснить очень большое количество афтершоков в очаговой области на глубинах 190–210 км. Как известно, для дегидратации пород требуется дополнительная энергия [Калинин и др., 1989], в качестве которой может выступать энергия высокоамплитудных сейсмических волн.

Таким образом, имеются большие основания считать, что сильнейшие глубокофокусные события в районе Гиндукуша происходят благодаря процессам дегидратации и подъема глубинных флюидов в очаговые зоны. Следует отметить, что эффекты дегидратации океанической коры и подъема флюидов давно известны в зонах субдукции, однако там они наблюдаются на значительно меньших глубинах (обычно до 70 км [Yamasaki, Seno, 2003]). Большие глубины, на которых наблюдаются такие процессы в районе Гиндукуша, очевидно, связаны с гораздо более слабым разогревом верхней мантии, о чем, свидетельствует, в частности, отсутствие молодого вулканизма, а также очень высокие скорости сейсмических волн на глубинах около 200 км [Roecker, 1982].

В заключение заметим, что эффекты дегидратации, а также подъема глубинных флюидов, есть отражение процессов самоорганизации геологических систем [Летников, 1992], в конечном счете ведущих к уменьшению потенциальной энергии Земли.

СПИСОК ЛИТЕРАТУРЫ

Барабанов В.Л., Гриневский А.О., Киссин И.Г., Николаев А.В. О некоторых эффектах вибрационного сейсмического воздействия на водонасыщенную среду. Сопоставление их с эффектами удаленных сильных землетрясений // Докл. АН СССР. 1987. Т. 297. № 1. С. 53–56. Земная кора и верхняя мантия Тянь-Шаня в связи с геодинамикой и сейсмичностью / Ред. Бакиров А.Б. Бишкек: Илим, 2006. 116 с.

Калинин В.А., Родкин М.В., Томашевская И.С. Геодинамические эффекты физико-химических превращений в твердой среде. М.: Наука, 1989. 157 с.

Каракин А.В., Лобковский Л.И. Гидродинамика и структура двухфазной астеносферы // Докл. АН СССР. 1982. Т. 268. № 2. С. 324–329.

Копничев Ю.Ф. Короткопериодные сейсмические волновые поля. М.: Наука, 1985. 176 с.

Копничев Ю.Ф., Баскутас И., Соколова И.Н. Пары сильных землетрясений и геодинамические процессы

в районе Центральной и Южной Азии // Вулканология и сейсмология. 2002. № 5. С. 49–58.

Копничев Ю.Ф., Соколова И.Н. Пространственно-временные вариации поля поглощения S-волн в очаговых зонах сильных землетрясений Тянь-Шаня // Физика Земли. 2003. № 7. С. 35–47.

Копничев Ю.Ф., Соколова И.Н. Неоднородности поля поглощения короткопериодных поперечных волн в литосфере Центрального Тянь-Шаня // Вулканология и сейсмология. 2007. № 5. С. 54–70.

Левин Б.В., Сасорова Е.В. Сейсмичность тихоокеанского региона: выявление глобальных закономерностей. М.: Янус-К, 2012. 307 с.

Летников Ф.А. Синергетика геологических систем. Новосибирск: Наука, 1992. 229 с.

Родкин М.В. Роль глубинного флюидного режима в геодинамике и сейсмотектонике. М., 1993. 192 с.

Bielinski R., Park S., Rybin A. et al. Lithospheric heterogeneity in the Kyrgyz Tien Shan imaged by magnetotelluric studies // Geophys. Res. Lett. 2003. V. 30. № 15. doi 10.1029/2003GL017455

Hammond W., Humpreys E. Upper mantle seismic wave velocity: effects of realistic partial melt geometries // J. Geophys. Res. 2000. V. 105. P. 10975–10986.

Gold T., Soter S. Fluid ascent through the solid lithosphere and its relation to earthquakes // Pageoph. 1984/1985. V. 122. P. 492–530.

Jung H., Green H., Dobrzhinetskaya L. Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change // Nature. 2004. V. 428. P. 545–549. *Main I., Bell A., Meredith P. et al.* The dilatancy–diffusion hypothesis and earthquake predictability // J. Geol. Soc. 2012. V. 367. P. 215–230.

Miyazawa M., Brodsky E. Deep low-frequency tremor that correlates with passing surface waves// J. Geophys. Res. 2008. V. 113. B01307. doi 10.1029/2006JB004890

Ogawa R., Heki K. Slow postseismic recovery of geoid depression formed by Sumatra-Andaman earthquake by mantle water diffusion // Geophys. Res. Lett. 2007. V. 34. L06313. doi 10.1029/2007GL029340

Pegler G., Das S. An enhanced image of the Pamir- Hindu Kush seismic zone from relocated earthquake hypocenters // Geophys. J. Int. 1998. V. 134. P. 573–595.

Raleigh C., Paterson M. Experimental deformation of serpentine and its tectonic inplications // J. Geophys. Res. 1965. V. 70. P. 3965–3985.

Roecker S. Velocity structure of the Pamir-Hindu Kush region: possible evidence of subducted crust // J. Geophys. Res. 1982. V. 87. P. 945–959.

Roecker S., Soboleva V., Nersesov I. et al. Seismicity and fault plane solutions of intermediate depth earthquakes in Pamir-Hindu Kush region // J. Geophys. Res. 1980. V. 85. P. 1358–1364.

Sibson R., Moore J., Rankin A. Seismic pumping – a hydrothermal fluid transport mechanism // J. Geol. Soc. 1975. V. 131. P. 653–659.

Yamasaki T., Seno T. Double seismic zone and dehydration embrittlement of the subducting slab // J. Geophys. Res. V. 08. № B4. doi 0.1029/2002JB001918