ВОСТОЧНЫЙ КАЗАХСТАН.

Н.Н Михайлова, И.Н. Соколова

Институт геофизических исследований Национального ядерного центра Республики Казахстан, г. Курчатов - г. Алматы, <u>mikhailova@kndc.kz</u>

В 2000 г. самым значительным событием в развитии сети наблюдений Национального ядерного центра Республики Казахстан (НЯЦ РК), не только в Казахстане, но и всей системы глобального мониторинга, стал ввод в эксплуатацию новой сейсмической группы «Маканчи» на востоке Казахстана, вблизи границы с Китаем. Эта группа входит в число первичных станций Международной системы мониторинга (МСМ), создаваемой Организацией Договора о всеобъемлющем запрещении ядерных испытаний. Всего в первичной сети МСМ запланировано 50 станций. Данные таких станций в реальном времени должны поступать в Международный центр данных (МЦД) в г. Вену и в Национальный центр данных в г. Алматы. Функции этого Центра выполняет Центр сбора и обработки специальной сейсмической информации Института геофизических исследований НЯЦ РК.

Названная группа «Маканчи» состоит из девяти скважинных однокомпонентных вертикальных сейсмометров и двух трехкомпонентных станций - скважинной и поверхностной. На рис. 1 показана схема расположения отдельных ее элементов. Условно можно говорить, что они расположены по двум концентрическим окружностям. Апертура группы составляет 4 *км*. Координаты всех элементов и глубина установки датчиков в скважинах представлены в табл. 1. Глубина скважин варьирует для разных элементов от 30 до 60 *м*. Регистрация сигналов производится в цифровом виде в непрерывном режиме. Число отсчетов в секунду стандартно для всех каналов и составляет 40. В качестве однокомпонентных сейсмометров используются скважинные сейсмометры GS-21, а у трехкомпонентных станций - скважинные широкополосные сейсмометры KS 54000 и поверхностные - GS-13.

Рис. 1. Схема расположения элементов сейсмической группы «Маканчи»

Коммуникационная структура сейсмической группы «Маканчи» представлена на рис. 2. Информация с выносных пунктов передается по радиотелеметрическим каналам в центральный пункт сбора информации станции «Маканчи», где три входящих потока преобразуются в один

исходящий. Далее этот поток передается по спутниковому каналу в Центр данных г. Алматы. Управление системой осуществляется дистанционно с центрального пункта сбора информации. Из Алматы данные передаются в реальном времени в МЦД, в Вену. Калибровка аппаратуры проводится дистанционно из Центра данных г. Алматы еженедельно. Автоматически и визуально осуществляется контроль данных, расчет статистики поступающих и передающихся данных.

JSb	Скваж	ина	Тип	Коорди	h_{y} ,	
	Индекс	Глубина,	сейсмометра	cp°,N	<i>X</i> °, E	м
		\mathcal{M}				
1	MK31	61	KS 54000-СТВТО, широкополосный	46.79374	82.29034	615.41
2	МК32	0	GS-13, короткопериодный	46.79374	82.29034	615.41
3	MK01	31	GS-21, короткопериодный	46.77008	82.30039	609.36
4	MK02	30.5	GS-21, короткопериодный	46.76945	82.30863	638.99
5	МК03	30.5	GS-21, короткопериодный	46.76569	82.3015	630.77
6	MK04	31	GS-21, короткопериодный	46.7715	82.29511	589.91
7	MK05	31	GS 21, короткопериодный	46.79375	82.29136	615.41
8	МК06	31	GS 21, короткопериодный	46.77513	82.31339	637.65
9	МК07	31	GS 21, короткопериодный	46.75387	82.31567	627.90
10	MK08	31	GS 21, короткопериодный	46.75533	82.28297	607.62
11	МК09	30	GS 21, короткопериодный	46.77442	82.27699	579.86

Таблица 1. К Координат и глубины скважин сейсмической группы «Маканчи»

Рис. 2. Схема организации потока данных от станции «Маканчи» в Центр данных, г. Алматы

В итоге к концу 2000 г. сеть сейсмических станций НЯЦ РК включала в себя пять сейсмических групп («Маканчи», «Курчатов-Крест», «Чкалово», «Восточное», «Зеренда») и шесть трехкомпонентных цифровых станций («Актюбинск», «Боровое», «Курчатов», «Маканчи», «Подгорное», «Талгар»). Координаты станций приведены в [1, 2], расположение показано на рис. 3.

Рис. 3. Карта расположения станций сейсмической сети НЯЦ РК и эпицентров землетрясений за 2000 г.

1 - сейсмическая группа; 2 - сейсмическая станция НЯЦ РК; 3 - другая станция; 4 - г. Зайсан, в котором ощущалось землетрясение 28 июня в $22^{h}43^{m}$ с $K_{P}=12.5$. Коды и названия сейсмических станций НЯЦ РК: АКТК - «Актюбинск», BRVK - «Боровое», CHKZ - «Чкалово», KURK - «Курчатов», MAKZ - «Маканчи», PDG - «Подгорное», TLG - «Талгар», VOS - «Восточное», ZRNK - «Зеренда»; код сейсмической группы «Маканчи» - MKAR.

В реальном времени в Центр данных в г. Алматы поступала информация с четырех групп («Маканчи», «Чкалово», «Восточное» и «Зеренда») и двух трехкомпонентных станций («Боровое» и «Курчатов»). Данные остальных станций поступали по почте на магнитных лентах со значительным опозданием. Для обработки данных в режиме, близком к реальному времени, специалистами Норвежского центра NORSAR в Центре данных в г. Алматы в конце 2000 г. было уставлено программное обеспечение [3]. Оно было адаптировано к условиям сети НЯЦ РК специалистами Центра данных, что позволило оперативно получать в автоматическом режиме первые сведения о произошедших событиях, составлять автоматический сейсмологический бюллетень, производить оперативный обмен данными с другими центрами.

Для автоматического детектирования используются только вертикальные компоненты записей всех элементов группы. После обнаружения сигналов производится их обработка, в результате которой методом частотно-волнового анализа (f-k analysis) определяются азимут и кажущаяся скорость, а также амплитуда, несущая частота и ряд других параметров.

Автоматическая локализация событий выполняется в три этапа. На первом этапе используются результаты автоматической обработки сигналов и производится их идентификация, т.е. определяется тип волны - *P*, *Pn*, *Sn*, *Lg*, *Rg* - для региональных сигналов или ложное детектирование. На втором этапе производится собственно поиск решения по локализации источника того события, которому принадлежат выделенные и идентифицированные вступления сейсмических фаз. На третьем этапе производится отбраковка тех решений, у которых невязки времен пробега получились слишком большими. Затем производится расчет магнитуды событий и, наконец, запись результатов в базу данных в формате CSS 3.0. Подробно об организации процесса обработки в Центре данных ИГИ НЯЦ РК можно узнать из работы [3].

Методика обработки данных в ретроспективном режиме, по сравнению с описанной в [1, 2], не изменилась. Кроме записей станций НЯЦ РК, для уточнения параметров очага дополнительно использовались данные других сейсмических сетей: КNET (Киргизская телеметрическая сеть [4]) и Тянь-Шаньской телеметрической сети «Ченгиз», установленной в 1997-2000 гг. Ренселлеровским политехническим институтом США, а также станций системы IRIS [5]. Данные этих сетей не используются в рутинной обработке землетрясений Кыргызстана и Казахстана в соответствующих сейсмологических опытно-методических экспедициях этих республик.

В табл. 2 представлены основные параметры землетрясений Восточного Казахстана и прилегающих территорий за 2000 г. с $A''_P>8.6$, а также параметры, характеризующие эллипс ошибок в определении эпицентра: S_{maj} - большая полуось, S_{min} - малая полуось, AZM - азимут большой оси эллипса ошибок.

N⁰	Дата, t0,		Эпицентр		Эллипс ошибок			К	5/г,	MPVA	K*	Другое	
	дм	ч мин с	с	9°,N	X°,E		Smin	AZM°	км	км			решение *
1	02.03	18 49 22.5	2.1	48.99	84.80	11.2	9.0	33.7	3/к		3.6	8.7	[6]
2	09.03	09 31 16.7	0.7	47.72	82.19	5.8	2.6	89.5	3/к		3.8	9.8	[6]
3	15.03	05 19 38.7	1.6	46.13	79.96	7.5	5.4	102.5	15	12	3.7	8.8	[7]
4	29.03	18 59 39.3	1.9	48.15	84.41	11.1	6.5	96.2	12	10	3.7	9.2	[6]
5	03.05	20 38 21.0	101	48.11	.43.11	7.4	3.1	101.3	3/к		3.8	9.4	[6, 7]
6	28.06	22 43 32.8	3.6	47.73	22.2	22.2	4.9	18.2	8		5.0	12.5	[6-9]
7	20.07	20 24 07.5	5.3	46.68	83.70	30.6	6.8	95.8	3/к		3.9	9.5	[6]
8	23.08	23 42 13.3	2.5	45.61	79.02	11.6	5.2	132.8	3/к		3.5	8.7	[6, 7]
9	10.09	16 02 55.1	2.9	43.22	80.06	18.8	6.6	129.2	3/к		4.6	9.6	[7]
10	28.09	08 23 31.4	0.9	48.21	85.22	5.6	3.8	25.9	3/к		4.4	9.8	[6, 7]
11	29.09	21 52 15.1	1.4	46.90	84.59	12.4	6.4	102.9	3/к		3.8	9.9	[6]
12	02.10	12 25 18.3	0.9	47.62	84.40	7.2	3.0	111.0	3/к		3.9	9.5	[6]
13	23.10	23 03 24.0	2.2	45.95	83.41	13.3	0	104.4	3/к		4.4	11.1	[6, 9]
14	13.12	04 44 13.7	1.0	48.03	86.83	10.1	5.9	121.8	3/к		5.0	12.1	[6, 8, 9]

Таблица 2. Параметры землетрясений Восточного Казахстана и приграничных районов Китая (ср=45-50°N, X=79-87°E) по станциям сети НЯЦРК с А"_P>8.6

Примечание. *Источники, содержащие другое решение параметров землетрясений, добавлены редактором.

Всего таких событий было зарегистрировано и обработано 14 (рис. 3), из которых три наиболее сильных (№6, 13, 14 из табл. 2) рассмотрены более детально.

<u>Землетрясение №6</u> с K_P =12.5 произошло 28 июня в 22^h43^m в районе хр. Тарбагатай. Землетрясение ощущалось в г. Зайсан (170 км) с интенсивностью *I*=4 балла по шкале MSK-64 [10]. В табл. 3 приведены параметры механизма этого очага, полученные по данным станций НЯЦ и Института сейсмологии Республики Казахстан (решение Н.Н. Полешко), согласно которому ось сжатия близширотна, ось растяжения - близмеридиональна и близгоризонтальна. Тип подвижки - сбросо-сдвиг по обеим нодальным плоскостям (рис. 4). Описанный механизм не соответствует общему представлению о региональном поле действующих напряжений. В работе [11] при обобщении всех материалов по механизмам очагов Восточного Казахстана был сделан вывод, что региональное поле характеризуется устойчивым северо-западным направлением осей напряжений сжатия (отклонение от меридиана примерно 40°). У этого землетрясения ось сжатия близширотна. Типы подвижек в очагах - обычно сдвиги с незначительной взбросовой или сбросовой компонентой. В данном случае наблюдается сбросо-сдвиг.

Таблица 3. Параметры механизма очага землетрясения 28 июня в 22 h43^m с К_Р=12.5

№	Дата,	<i>t0</i> ,	К	KP	Оси главных напряжений						Нодальные плоскости					
	дм	ч мин с	км		Т		1	Ν		Р		NP1		M>2		
					PL	AZM	PL	AZM	PL	AZM	STK	DP	SLIP	m	DP	
6	28.06	22 43 26.0	8	12.5	16	168	35	67	51	276	231	69	-128	117	43	-33

Рис. 4. Стереограмма механизма очага землетрясения 28 июня с КР=12.5 в проекции нижней полусферы

1 - нодальные линии; 2, 3 - оси главных напряжений сжатия и растяжения соответственно; затемнена область волн сжатия.

<u>Землетрясение №13</u> с *КР*=11.1 произошло 23 октября в 23^h03^m в районе Джунгарского хребта вблизи границы с Китаем. Какие-либо сведения об его макросейсмических проявлениях отсутствуют.

<u>Землетрясение №14</u> с $K_P=12.1$ произошло 13 декабря в 04^h44^m в Китае (в провинции Северный Синь-Цзянь) в приграничной с Казахстаном полосе. Оно было зарегистрировано сейсмической группой «Маканчи» (рис. 5) и другими станциями сети НЯЦ РК. Обработка его проведена различными способами. В частности, по данным сейсмической группы «Маканчи» с помощью F-К-анализа [12] были определены азимут на эпицентр и кажущаяся скорость, а затем проведена локализация эпицентра с учетом других станций НЯЦ РК.

Рис. 5. Вид записей землетрясения 13 декабря с К_Р=12.1 по данным группы «Маканчи»

Ввод в строй новой сейсмической группы «Маканчи» и начавшееся проектирование других сейсмических групп международного мониторинга на исследуемой территории позволяют надеяться, что в ближайшие годы сеть НЯЦ РК позволит детально изучать сейсмичность всего Казахстана.

Авторы выражают признательность IRIS DMC за предоставленные цифровые записи [5].

Литература

1.Беляшова Н.Н., Михайлова Н.Н., Соколова И.Н. Центральный и Восточный Казахстан // Землетря

сения Северной Евразии в 1996 году. - М.: ОИФЗ РАН, 2002. - С. 71-75.

- 2. Михайлова Н.Н., Соколова И.Н. Центральный и Восточный Казахстан // Землетрясения Северной Евразии в 1997 году. - Обнинск: ГС РАН, 2003. - С. 89-91.
- Евразии в 1997 году. Обнинск. ГС ГАП, 2005. С. 89-91.
- 3. Михайлова Н.Н., Синева З.И. Обработка данных сейсмических станций НЯЦ РК // Геофизика и про
- блемы нераспространения. Вестник НЯЦ РК. Вып. 2. Курчатов: НЯЦ РК, 2002. С. 64-68.
- 4. Vernon F. Kyrghizstan seismic telemetry network // IRIS Newsletter. 1992. 11. № 1. P. 7-9.
- 5.Butler R., Lay T., Creager K., Earl P., Fisher K., Gaherty J., Laske G., Leith B., Park J., Ritzwoller M., Tromp J., Wen L.. The Global seismographic network surpasses its design goal // Eos,
 - Transactions, AGU. - 2004. - 85. - № 23. - P. 225-229.
- 6.Филина А.Г., Подкорытова В.Г., Фатеев А.В. (отв. сост.), Данциг Л.Г., Манушина О.А., Под-

липская Л.А., Слепенкова Э.А. Алтай и Саяны. (См. раздел VI (Каталоги землетрясений) в наст, сб. на CD).

7.Джанузаков К.Д. (по региону), Соколова Н.П. (Кыргызстан), Калмыкова Н.А. (Казахстан), Гия-

зова Ш.Ш. (Узбекистан), Сопиева К., Жунусова Ж., Айбашева К., Шипулина С.А., Умурзако-

ва Р.А., Проскурина Л.П., Ульянина И.А., Каймачникова Н.И., Гайшук Л.Н., Тулегенова М.К.,

Абдыкадыров А.А. Центральная Азия. (См. раздел VI (Каталоги землетрясений) в наст. сб. на CD).

- 8.Сейсмологический бюллетень (ежедекадный) за 2000 год / Отв. ред. О.Е. Старовойт. -Обнинск: ЦОМЭ ГС РАН, 2000-2001.
- 9.Bulletin of the International Seismological Centre for 2000. Berkshire: ISC, 2002.
- 10. Медведев С.В. (Москва), Шпонхойер В. (Иена), Карник В. (Прага). Шкала сейсмической интен сивности MSK-64. М.: МГК АН СССР, 1965. 11 с.

11.Михайлова Н.Н., Полешко Н.Н. О механизмах очагов землетрясений Восточного Казахстана // Гео физика и проблемы нераспространения. Вестник НЯЦ РК. Вып. 2. - Курчатов: НЯЦ РК, 2005. -С. 142-146.

12.Capon J. High-resolution frequency-wavenumber spectrum analysis // Proc. Inst. of Electrical and Electronic Eng. - 1969. - 57. - P. 1408-1418.