О ПРИЧИНАХ РАСХОЖДЕНИЙ ОЦЕНОК ЭНЕРГИТИЧЕСКИХ ХАРАКТЕРИСТИК РАЗНЫХ ЦЕНТРОВ ОБРАБОТКИ

Михайлова Н.Н., Рябенко О.В.

Институт геофизических исследований, г. Курчатов, Казахстан

Предложено объяснение расхождений в определении магнитуд и энергетического класса, получаемыми различными центрами обработки данных в Центральной Азии на основе сравнения параметров землетрясений и сейсмических шумов на близко расположенных сейсмических станциях с разными условиями установки регистрируемых приборов. Установлено, что магнитудные параметры, определяемые в Центре данных Института геофизических исследований, занижены в связи с тем, что большинство станций сети ИГИ оснащено скважинной аппаратурой, установленной на глубинах 30–80 м.

Введение

В последние годы Центр данных РГП ИГИ (KNDC) участвует в службе срочных донесений о происходящих землетрясениях для МЧС РК. По всем сильным и ощутимым землетрясениям в оперативном режиме передаются основные параметры происшедших землетрясений на территории Казахстана и его окружения. Аналогичные сведения в МЧС передает и Центр обработки другой сети сейсмических наблюдений Казахстана – Сейсмологической опытно-методической экспедиции МОН РК. Оба Центра обработки представляют свои данные на своих сайтах в Интернете. Анализ данных по одним и тем же событиям показал, что оценки энергетических и магнитудных характеристик не совпадают. Было замечено, что чаще оценки KNDC являются заниженными по отношению к оценкам СОМЭ. В связи с этим, если в требованиях МЧС РК указан нижний предел энергии передаваемых землетрясений. То бывают случаи, когда в KNDC землетрясение имеет параметры. По которым оно не должно быть передано, а СОМЭ подает свое донесение по событию, удовлетворяющему критериям. Целью настоящей работы было сравнение получаемых в разных центрах решений, изучение энергетических определений по данным различных региональных центров Центральной Азии и выяснение причин несоответствия оценок.

Сравнение методик и результатов определений энергетических и магнитудных характеристик в разных центрах

На территории Центральной Азии ведут постоянные наблюдения и обработку данных сети сейсмических наблюдений различных организаций. При этом определяются разные параметры, характеризующие величину землетрясения. Это различные типы магнитуд, определяемые по различным шкалам, энергетический класс, сейсмический момент. Мы выбрали те центры, где обработка данных проводится по одинаковым методикам. В качестве параметров при массовой обработке землетрясений определяются: магнитуда по объемным волнам на каналах, аналогичных каналу прибора СКМ, рассчитываемая по региональной калибровочной кривой – *тру* [1]; энергетический класс К, равный логарифму высвобожденной сейсмической энергии в джоулях [2]. Все определения проводятся по цифровым записям, при этом используются аналогичные цифровые фильтры и программы расчетов. Такими центрами являлись: KNDC - Центр данных Института геофизических исследований КАЭ РК; СОМЭ – Центр данных Сейсмологической опытно-методической экспедиции; ЦДКИС – Центр данных Института сейсмологии Академии наук Кыргызской Республики.

Станции этих сетей расположены на территории двух стран – Казахстана и Кыргызстана. На рисунке 1 показана сеть станций ИГИ КАЭ РК. Станции этой сети расположены в основном по периметру страны. Большую часть этих станций представляют сейсмические группы, состоящие из 10 – 21 элемента.

На рисунке 2 показана сеть станций СОМЭ. Станции этой сети сконцентрированы в основном на юге и юго-востоке Республики. Особенно плотная сеть имеется вблизи г. Алматы в пределах зребтов Северного Тянь-Шаня.

На рисунке 3 представлена сеть станций ИС НАН КР. Ее станции находятся на Северном и Южном Тянь-Шане вблизи сейсмически активных горных областей.

Станции СОМЭ и ИС НАН КР представляют собой отдельные трехкомпонентные станции. В пределах каждой сети станции передают свои данные в Центры обработки данных. Каждый центр обработки составляет каталог землетрясений и сейсмический бюллетень событий, в котором можно найти определения значений *тру* и *K*.

Кружки – сейсмические группы, треугольники – трехкомпонентные станции, звездочки – инфразвуковые станции

Рисунок 1. Схема расположения сейсмических станций сети ИГИ

Рисунок 3. Схема расположения станций ИС НАН КР

Сопоставление результатов определений магнитуд и энергетических классов в KNDC с двумя другими Центрами

Для корректного сопоставления получаемых решений мы сделали выборку одних и тех же событий из каталога землетрясений KNDC и COMЭ, далее провели сравнительный анализ полученных значений *тру* и *K*.

Для сопоставления данных KNDC и COMЭ было отобрано 50 событий. Были рассчитаны значения разницы магнитуд и классов для каждого события.

$$\delta mpv = m_{\text{COMP}} - m_{\text{KNDC}} \tag{1}$$

$$\delta K = K_{\text{COM3}} - K_{KNDC} \tag{2}$$

Построены распределения полученных значений $\delta m pv$ и δK , приведенные на рисунке 4 (а, б).

по данным KNDC и СОМЭ

По распределениям на рисунке 4 определены значения медиан распределений и персентилей на уровне 15% и 85%. Получено, что медиана $\delta m pv=0,52$, медиана $\delta K=0,44$. Это означает, что по данным станций СОМЭ происходит систематическое завышение магнитуд в среднем на 0,52, классов на 0,44. Аналогичное исследование проведено по данным Кыргызской сети станций и сети станций РГП ИГИ. Для сопоставления данных КNDC и ЦД КИС было отобрано 50 событий. Полученные распределения значений показаны на рисунке 5 (а, б). Медианы распределений равны $\delta mpv=0,3$ и $\delta K=0,5$. Следует вывод, что сеть Института сейсмологии Кыргызстана также завышает значения магнитуд и классов относительно сети РГП ИГИ.

$$\delta mpv = m_{\text{ШЛКИС}} - m_{KNDC} \tag{3}$$

$$\delta K = K_{\text{IJJKHC}} - K_{KNDC} \tag{4}$$

Таким образом, мы получили, что при одинаковой методике определения mpv и K, использовании одних и тех же калибровочных кривых по станциям, расположенным практически в одном регионе, в KNDC получаются систематически меньшие значения mpv и K, чем в двух других центрах.

Рисунок 5. Распределение значений бтру и бК по данным KNDC и ЦДКИС

Связь регистрируемых амплитуд колебаний с глубиной расположения сейсмического датчика

Необходимо было выяснить причину такого занижения. Было сделано предположение, что это может быть связано с особенностями станций сети ИГИ. Основу этой сети составляют сейсмические группы, все элементы которых размещены в скважинах. Все станции СОМЭ и ИС НАН КР расположены на поверхности в бункерах или штольнях.

Возможно, занижение магнитуд и классов связано именно с уменьшением амплитуд сейсмических колебаний с глубиной.

Основное количество обрабатываемых землетрясений в KNDC приходится на четыре сейсмические группы, расположенные в разных частях Казахстана. Особенно важное значение имеют группы Маканчи, Каратау и Курчатов, находящиеся в сейсмически активных областях страны. Именно эти группы представлены скважинными наблюдениями. Дадим краткую характеристику сейсмических групп.

Сейсмическая группа «Маканчи»

Первичная сейсмическая группа международной системы мониторинга «Маканчи» – (MKAR, PS23) размещена в Урджарском районе Восточно-Казахстанской области в 25 км к востоку от поселка Маканчи.

Сейсмическая группа «Маканчи» состоит из 10 точек наблюдения, расположенных по двум окружностям с одной центральной точкой (рисунок 6). Радиус внутреннего кольца ~500 м, наружного ~2000 м. На 9 пунктах в скважинах установлены однокомпонентные вертикальные сейсмометры GS21 (GeotechInstruments). Кроме того, имеется одна широкополосная трехкомпонентная станция с сейсмометром CMG-3TB (Guralp). Регистрирующая аппаратура 24-битные АЦП AIM24S (ScienceHorizons). Частота оцифровки: 40 опросов/сек/канал. Привязка временной шкалы: система GPS. В январе 2002 г. станция была сертифицирована комиссией МСМ в качестве первичной станции МСМ. Координаты и характеристики скважин, в которых установлены

сейсмометры, приведены в таблице 1. Из таблицы видно, что аппаратура находится на глубине 31–61 м от поверхности Земли.

Рисунок 6. Схема расположения сейсмической группь «Маканчи»

Сейсмическая группа «Акбулак»

Сейсмическая группа «Акбулак» – (<u>ABKAR</u>) размещена в Айтикебийском районе Актюбинской области вблизи поселка Талдык.

Сейсмическая группа Акбулак состоит из 10 точек наблюдения, расположенных по двум окружностям с одной центральной точкой (рисунок 7). Радиус внутреннего кольца ~500 м, наружного ~2000 м. На 9 пунктах в скважинах установлены однокомпонентные вертикальные сейсмометры GS21 (GeotechInstruments). Кроме того, имеется одна широкополосная трехкомпонентная станция с сейсмометром KS54000 (GeotechInstruments). Регистрируюаппаратура 24-битные щая ΑЦΠ AIM24S (ScienceHorizons). Частота оцифровки: 40 опросов/сек/канал. Привязка временной шкалы: система GPS. Координаты и характеристики скважин, в которых установлены сейсмометры, приведены в таблице 2. Из таблицы видно, что вся аппаратура размещена в скважинах на глубинах 40-80 м от поверхности Земли.

№ сайта	Сейсмометр, тип	Глубина скважины, м	Широта	Долгота	Высота над уровнем моря, м	Примечания
MK31	CMG-3TB	61	N46.7937	E82.2904	615	трехкомпонентный
MK01	GS 21	31	N46.7700	E82.3003	609	вертикальный
MK02	GS 21	30.5	N46.7694	E82.3086	639	вертикальный
MK03	GS 21	30.5	N46.7656	E82.3015	631	вертикальный
MK04	GS 21	31	N46.7715	E82.2951	590	вертикальный
MK05	GS 21	31	N46.7937	E82.2913	615	вертикальный
MK06	GS 21	31	N46.7751	E82.3133	638	вертикальный
MK07	GS 21	31	N46.7538	E82.3156	628	вертикальный
MK08	GS 21	31	N46.7561	E82.2866	608	вертикальный
MK09	GS 21	31	N46.7744	E82.2769	580	вертикальный

Таблица 1. Координаты и глубины скважин сейсмической группы «Маканчи» (MKAR, PS23)

№ сайта	Сейсмометр, тип	Глубина скважины, м	Широта	Долгота	Высота над уровнем моря, м	Примечания
AB31	KS 54000	80	N49.2556	E59.9431	233	трехкомпонентный
AB01	GS 21	80	N49.2556	E59.9431	233	вертикальный
AB02	GS 21	40	N49.2591	E59.9466	230	вертикальный
AB03	GS 21	40	N49.2511	E59.9431	234	вертикальный
AB04	GS 21	40	N49.2578	E59.9371	236	вертикальный
AB05	GS 21	40	N49.2736	E59.9431	239	вертикальный
AB06	GS 21	40	N49.2611	E59.9693	231	вертикальный
AB07	GS 21	40	N49.2410	E59.9593	230	вертикальный
AB08	GS 21	40	N49.2387	E59.9280	234	вертикальный
AB09	GS 21	40	N49.2614	E59.9280	237	вертикальный

Таблица 2. Координаты и глубины скважин сейсмической группы «Акбулак» (ABKAR)

Рисунок 7. Схема расположения сейсмической группы «Акбулак»

Сейсмическая группа «Каратау»

Сейсмическая группа «Каратау» – <u>(KKAR)</u> размещена в Таласском районе Жамбылской области недалеко от г. Каратау.

Сейсмическая группа Каратау состоит из 10 точек наблюдения, расположенных по двум окружностям с одной центральной точкой (рисунок 8). Радиус внутреннего кольца ~500 м., радиус наружного ~2000 м. На 9 пунктах в скважинах установлены однокомпонентные вертикальные сейсмометры GS21 (GeotechInstruments). Кроме того, имеется одна широкополосная трехкомпонентная станция с сейсмометром KS54000 (GeotechInstruments). Регистрирующая аппаратура 24-битные АЦП AIM24S (ScienceHorizons). Частота оцифровки: 40 опросов/сек/канал. Привязка временной шкалы: система GPS. Координаты и характеристики скважин, в которых установлены сейсмометры, приведены в таблице 3. Из таблицы видно, что вся аппаратура размещена в скважинах на глубинах 50–60 м от поверхности Земли.

Рисунок 8. Схема расположения сейсмической группы «Каратау»

Таблица 3. Координаты и глубины скважин сейсмической группы «Каратау» (KKAR)							
ейсмометр, тип	Глубина скважины, м	Широта	Долгота	Высота над уровнем моря, м	П		

№ сайта	Сейсмометр, тип	Глубина скважины, м	Широта	Долгота	Высота над уровнем моря, м	Примечания
KK 31	KS 54000	60	N43.1034	E70.5115	521	трехкомпонентный
KK 01	GS 21	50	N43.1054	E70.5061	525	вертикальный
KK 02	GS 21	50	N43.1034	E70.5115	521	вертикальный
KK 03	GS 21	50	N43.1028	E70.5012	529	вертикальный
KK 04	GS 21	50	N43.1098	E70.5060	523	вертикальный
KK 05	GS 21	50	N43.1170	E70.5235	510	вертикальный
KK 06	GS 21	50	N43.0944	E70.5255	534	вертикальный
KK 07	GS 21	50	N43.0891	E70.5008	526	вертикальный
KK 08	GS 21	50	N43.1048	E70.4871	543	вертикальный
KK 09	GS 21	50	N43.1224	E70.4995	546	вертикальный

Сейсмическая группа «Курчатов-Крест»

Вспомогательная сейсмическая группа международной системы мониторинга «Курчатов-Крест» – (KURK, AS058) расположена вблизи города Курчатов Восточно-Казахстанской области.

Сейсмическая группа «Курчатов-Крест» представляет собой два пересекающихся линейных профиля приборных скважин с сейсмическими датчиками. (ссылка на схему сейсмической группы) Азимуты простирания профилей: 10° (меридиональный профиль, KUR1-KUR10) и 320° (широтный профиль, KUR11-KUR20) (рисунок 9). Длина каждого профиля ~22,5 км. На каждом профиле имеется по 10 приборных скважин (пунктов) с общим центральным пунктом в месте пересечения профилей. Среднее расстояние между пунктами профиля ~ 2,25 км. В скважинах установлены вертикальные сейсмометры CMG-3V (пункты KUR1-KUR20). В центре (KUR21, КURBB) установлен сейсмометр СМG-3TB. Все сейсмометры фирмы Guralp. Регистрирующая аппаратура: 24-битные АЦП Europa-T (Nanometrics). Частота оцифровки: 40 опросов/сек/канал. Привязка временной шкалы: система GPS. В декабре 2006 г. станция была сертифицирована комиссией МСМ в качестве вспомогательной станции МСМ. Из таблицы 4 видно, что все элементы группы представлены скважинными приборами, установленными на разных глубинах от 26.5 до 52 м от поверхности Земли.

Рисунок 9. Схема расположения сейсмической группы «Курчатов-Крест»

Таблица 4. Координаты и глубины скважин сейсмической группы «Курчатов-Крест»(KURK, AS058)

№ сайта	Сейсмометр, тип	Глубина скважины, м	Широта	Долгота	Высота над уровнем моря, м	Примечания
KURBB	CMG-3TB	52	N50.6226	E78.5304	199,8	трехкомпонентный
KUR01	CMG-3V	35,6	N50.7216	E78.5634	164,6	вертикальный
KUR02	CMG-3V	50	N50.7017	E78.5566	169	вертикальный
KUR03	CMG-3V	32	N50.6820	E78.5500	175	вертикальный
KUR04	CMG-3V	38,9	N50.6622	E78.5434	177,4	вертикальный
KUR05	CMG-3V	27,5	N50.6424	E78.5366	183	вертикальный
KUR06	CMG-3V	35	N50.6028	E78.5239	196,5	вертикальный
KUR07	CMG-3V	37,5	N50.5831	E78.5172	200	вертикальный
KUR08	CMG-3V	39	N50.5632	E78.5108	200,8	вертикальный
KUR09	CMG-3V	29,5	N50.5433	E78.5043	201,2	вертикальный
KUR10	CMG-3V	36,2	N50.5236	E78.4977	205,4	вертикальный
KUR11	CMG-3V	30	N50.6019	E78.6863	202,4	вертикальный
KUR12	CMG-3V	34,1	N50.6061	E78.6551	204,0	вертикальный
KUR13	CMG-3V	44,4	N50.6102	E78.6242	224,4	вертикальный
KUR14	CMG-3V	38,2	N50.6144	E78.5927	217	вертикальный
KUR15	CMG-3V	36	N50.6185	E78.5615	200,7	вертикальный
KUR16	CMG-3V	32,7	N50.6269	E78.4993	194,4	вертикальный
KUR17	CMG-3V	38,3	N50.6318	E78.4690	196,6	вертикальный
KUR18	CMG-3V	49,4	N50.6353	E78.4368	192,4	вертикальный
KUR19	CMG-3V	26,5	N50.6394	E78.4057	181,8	вертикальный
KUR20	CMG-3V	50	N50.6436	E78.3746	183,4	вертикальный

Из теоретических соображений и экспериментальных работ различных исследователей известно, что амплитуды сейсмических колебаний на свободный поверхности возрастают по сравнению с амплитудами на глубине. Этот факт широко используется в работах по мониторингу: для уменьшения уровня сейсмического шума сейсмические датчики размещают в скважинах. В статье [3], на данных станции Актюбинск показано, что после нескольких лет работы станции на поверхности в специальном бункере, в 2005 г. сейсмометр станции был помещен в скважину глубиной 65 м. Уменьшение уровня шума в связи с погружением сейсмометров произошло очень существенно. Интегральный эффект на периодах менее 0,1 с составил почти 30 дБ: уровень шума в скважине меньше уровня на поверхности. С увеличением периодов колебаний эффект снижения шума уменьшается. На периодах 0,5с – 1с разница в уровнях составляет 10–15 дБ (рисунок 10).

Аналогичный вывод можно сделать и при рассмотрении сейсмических шумов по станциям Маканчи – MKAR (скважинная) и MAKZIRIS/GSN (аппаратура в штольне). На рисунке 11 представлены спектральные кривые сейсмического шума по этим станциям.

Рисунок 10. Спектральные кривые сейсмического шума по станциям АКТК(поверхность), АКТО-AS059 и ABKAR (скважины)

Рисунок 11. Спектральные кривые дневного сейсмического шума по станциям MKAR-PS23 и MAKZ-IRIS/GSN

Видно, что различие в спектральных уровнях шума достигает наибольших значений на периодах от 0,1 с до 0,8 с: на поверхности шум почти на 20 дБ выше, чем в скважине. На 1 с различие в уровнях уменьшается до 7 дБ.

Станции МКАР и МАКZ находятся на расстоянии 24 км одна от другой. Это хорошая возможность проверить на их данных непосредственно различие в определяемых параметрах. Фактически они регистрируют одни и те же события. Расстояния до гипоцентров различаются незначительно. Поэтому можно сопоставить значения магнитуд и классов для одних и тех же событий. Была сделана выборка событий из бюллетеня KNDC, где имелись данные этих двух станций. Построены распределения, аналогичные приведенным выше. На рисунке 12 приведены полученные распределения.

Рисунок 12. Распределения значений бтру и бК по станциям MAKZ и MKAR

Это сравнение наиболее корректное. Когда сравниваются средние значения магнитуд и классов для событий, зарегистрированных всей сетью, то осредняются все данные по станциям, находящихся в разных азимутах, на разных расстояниях и т.д. Здесь же все аналогично при регистрации одного события. Поэтому можно отметить самые маленькие значения разброса в распределениях. Но, мы видим тот же эффект - станция на поверхности завышает как магнитуду, так и класс соответственно на 0,2 и 0,33 единиц соответственно. Были проведены исследования связи найденных различий с такими факторами, как азимут, расстояния, сами значения магнитуд. Достаточно четко обнаружена корреляционная зависимость значений завышения магнитуд и классов с самими значениями этих параметров. Чем больше значение М и К, тем меньше различие между станциями (рисунок 13).

Рисунок 13. Зависимость различий в значениях магнитуд и классов от М и К

Этого можно было ожидать, исходя из данных о частотной зависимости различий в уровнях сейсмических шумах. Как видно из рисунка 13, на больших периодах разница в уровнях уменьшается. Известно, что чем сильнее землетрясение, тем спектр его колебаний сдвинут в сторону больших периодов.

Интересные результаты прямых наблюдений на

разных глубинах получены в последние годы на Бишкекской вертикальной сейсмической группе BIVA [4]. В скважине на различной глубине от 0 до 145 м установлены сейсмоприемники. 18 марта 2011 г. этой группой зарегистрировано землетрясение на глубинах 10, 25, 45, и 145 м. На рисунке 14 видно, как меняется волновая картина записи с глубиной.

Вверху – горизонтальные и вертикальные компоненты записей на различных глубинах. Внизу – радиальная и трансверсальная компоненты записей ускорений после поворота компонент [4]

Рисунок 14. Изменение врлновой картины записи с глубиной

Рисунок 15. Связь получаемой на разных глубинах волновой картины с частотным составом и углами выхода сейсмических лучей

Четко видно, что амплитуды сейсмических колебаний уменьшаются с глубиной. Однако закон изменения амплитуд связан с геологическим строением пород верхней части разреза и его скоростными характеристиками.

В этой же работе показана связь получаемой на разных глубинах волновой картины с частотным составом и углами выхода сейсмических лучей (рисунок 15).

Получены синтетические сейсмограммы на разных глубинах для разных случаев. В области частот от 0,5 до 2 с снижение амплитуд составляет от 2 до 5 раз. Это может вызвать разницу в магнитудах от 0,3 до 0,7 единиц.

Заключение

1. Получило количественное подтверждение систематическое различие в энергетических параметрах землетрясений по определениям разных Центров обработки. В KNDC при параметризации очагов землетрясений получаются более низкие значения оценок магнитуд и энергетических классов, чем в казахстанском центре СОМЭ и киргизском Институте сейсмологии. 2. Выдвинута и подтверждена версия о связи наблюдаемых различий с размещением приборов сейсмических групп ИГИ в скважинах на глубинах от 26 до 80 м.

3. По данным регистрации сейсмических шумов и сигналов от землетрясений близко расположенными станциями - поверхностной MAKZ и скважинной MKAR - показано различие в значениях параметров одних и тех же событий и наблюдаемое занижение оценок по станции MKAR.

4. С ростом энергии землетрясений различие в характеристиках на поверхностной и скважинной станции уменьшается.

5. Приведены литературные данные, свидетельствующие о том, что при разных землетрясениях могут наблюдаться разные расхождения, связанные с частотным составом колебаний и расстояниями до эпицентра. Моделирование волновой картины записей при хорошем знании строения и параметров среды, где расположена скважина, может дать прогнозируемые оценки амплитуд сигналов на глубине по отношению к наблюдаемым на поверхности при разных вариантах.

Литература

- Михайлова, Н.Н. Калибровочная функция δ(Δ) для определения магнитуды MPVA землетрясений Северного Тянь-Шаня / Н.Н. Михайлова, Н.П. Неверова. // Комплексные исследования на Алма-Атинском прогностическом полигоне. – Алма-Ата: Наука, 1986.
- 2. Раутиан, Т. Г. Об определении энергии землетрясений на расстояниях до 3000 км. / Т. Г. Раутиан // Труды ИФЗ АН СССР 1964- № 32 (199). С. 72-92.
- Михайлова, Н.Н. Спектральные характеристики сейсмического шума по данным казахстанских станций мониторинга / Н.Н. Михайлова, И.И. Комаров // Вестник НЯЦ РК, 2006. – Вып. 2. – С 19-26.
- 4. Parolai, S. The Bishkek vertical array (BIVA): acquiring strong motion data in Kyrgyzstan and first results / S Parolai [et al] // Journal of Seismology, 17, 2, 707-719

ӨҢДЕУДІҢ ӘР ОРТАЛЫҚТАРДЫҢ ЭНЕРГЕТИКАЛЫҚ СИПАТТАМАЛАРЫН БАҒАЛАУЫНДА АЙЫРМАШЫЛЫҒЫНЫҢ СЕБЕПТЕРІ ТУРАЛЫ

Михайлова Н.Н., Рябенко О.В.

Казақстан, Курчатов қ., Геофизикалық зерттеулер институты

Орталық Азияда деректерді өндеудің әр орталықтарында магнитуда мен энергетикалық қлассын анықтауында алынатын айырмашылықтарды, тірекейтін аспаптарды орнатудың бірдемей емес жағдайларымен жақын орналасқан сейсмикалық станциялардағы жерсілкінулер параметрлері мен сейсмикалық шуларын салыстыру негізінде түсіндіруі ұсынылған. Геофизикалық зерттеулер институтының Деректер орталығында анықталатын магнитудалық параметрлері, ГЗИ желісі станцияларының көбі 30–80 м. тереңдіктерде орнатылған аппаратурамен жарақталғанына байланысты, төмен болуы анықталған.

ON REASONS OF DISCREPANCIES OF ESTIMATES OF ENERGETIC PARAMETERS OF VARIOUS PROCESSING CENTERS

N.N. Mikhailova, O.V. Ryabenko

Institute of Geophysical Research, Kurchatov, Kazakhstan

The paper offers an explanation of discrepancies in the determination of magnitudes and energy class obtained by various data processing centers in Central Asia based on the comparison of parameters of earthquakes and seismic noises at closely located seismic stations with various conditions of recording device installations. It has been established that magnitude parameters that are determined in the Data Center of the Institute of Geophysical Research are lowered due to the fact that the majority of the stations of IGR network is equipped with borehole instrumentation that has been installed at the depth of 30–80 m.