= ГЕОФИЗИКА =

УДК 550.34

ХАРАКТЕРИСТИКИ КОЛЬЦЕВОЙ СЕЙСМИЧНОСТИ В РАЗНЫХ ДИАПАЗОНАХ ГЛУБИН ПЕРЕД СИЛЬНЫМИ И СИЛЬНЕЙШИМИ ЗЕМЛЕТРЯСЕНИЯМИ В РАЙОНЕ СУМАТРЫ

© 2009 г. Ю. Ф. Копничев, И. Н. Соколова

Представлено академиком В.Н. Страховым 10.06.2009 г.

Поступило 10.06.2009 г.

Анализируются характеристики сейсмичности в районе Суматры в диапазонах глубин 0-33 и 34-70 км перед 10 сильными землетрясениями с $M_w = 7.0-9.0$, произошедшими в 2000-2008 гг., а также в зонах сейсмических брешей. Выделены кольцевые структуры сейсмичности в обоих диапазонах глубин. Показано, что эпицентры главных событий, как правило, находятся вблизи областей пересечения или наибольшего сближения "мелких" и "глубоких" колец. Получены корреляционные зависимости размеров колец, а также пороговых значений магнитуд землетрясений в районах колец от энергии главных событий. Выделение кольцевых структур в зонах сейсмических брешей (в районах центральной и южной Суматры) позволяет предполагать, что здесь идут активные процессы подготовки сильных землетрясений.

В работах [1, 2] показано, что в зонах субдукции перед сильными и сильнейшими землетрясениями формируются кольцевые структуры сейсмичности в разных диапазонах глубин. Наблюдаются большие вариации размеров колец сейсмичности при близких магнитудах главных событий, что, возможно, в значительной степени связано с различиями сейсмотектонических условий в разных зонах субдукции. Для выяснения этого вопроса в настоящей работе проводится более детальный анализ характеристик кольцевой сейсмичности в районе Суматры, где за последние 9 лет произошло несколько сильнейших событий, включая Великое Суматринское землетрясение 26 декабря 2004 г. с $M_w = 9.0$.

По аналогии с [1, 2] мы рассматривали характеристики сейсмичности для разных участков зоны

Российской Академии наук, Москва

Беньофа в диапазонах глубин 0-33 и 34-70 км. Использовались каталоги землетрясений ISC (до 1973 г.) и NEIC (с 01.01.1973 г.). Анализировались данные о землетрясениях, произошедших в окрестностях будущих очаговых зон, с магнитудами соответственно $M \ge M_{n1}$ и $M \ge M_{n2}$, где M_{n1} варьировалось от 4.5 до 5.5 для первого диапазона глубин, а $M_{п2}$ от 4.0 до 5.5 — для второго (табл. 1). При этом выбирался временной интервал, как правило, с 01.01.1973 г. до дня, предшествовавшего главному событию. Исключение составляют данные для очаговой зоны Суматринского землетрясения 26 декабря 2004 г., для которой рассмотрены характеристики сейсмичности начиная с 01.01.1969 г. Обработаны данные о сейсмичности перед десятью сильными и сильнейшими землетрясениями с $M_w = 7.0-9.0$ в районе Суматры (табл. 1). Кроме того, изучены характеристики сейсмичности в двух зонах сейсмических брешей (в районах центральной и южной Суматры). Для этих зон рассматривались события, произошедшие до 01.01.2009 г.

На рисунке 1 показаны характеристики сейсмичности перед землетрясением 13 февраля 2001 г. $(M_w = 7.4)$ в районе южной Суматры. Неглубокие события ($M_{n1} = 4.8$) на фоне афтершоков землетрясения 04.06.2000 г. ($M_w = 7.9$) сформировали, в частности, кольцевую структуру с большой осью размером $L \sim 80$ км, вытянутую в северо-северозападном направлении. Землетрясения с промежуточной глубиной гипоцентров ($M_{\pi 2} = 4.5$) образовали кольцо меньшего размера с большой осью длиной $l \sim 60$ км, ориентированное параллельно побережью. Необходимо заметить, что эпицентр главного события находился на расстоянии $\Delta r \sim$ ~ 10 км от области пересечения кольцевых структур. (Следуя [1, 2], для удобства далее кольца первого типа будем называть мелкими, а второго глубокими.)

Анализ показал, что перед всеми землетрясениями сформировались кольцевые структуры сейсмичности в двух диапазонах глубин (рис. 2,

Институт физики Земли им. О.Ю. Шмидта

Институт геофизических исследований Национального ядерного центра Республики Казахстан, Алма-Ата

Дата	Широта	Долгота	<i>Н</i> , км	M_w	$M_{\pi 1}$	<i>L</i> , км	<i>M</i> _{π2}	<i>l</i> , км
04.06.2000 г.	4.72° S	102.09° E	33	7.9	5.5	150	5.5	70
13.02.2001 г.	4.68 S	102.56 E	36	7.4	4.8	80	4.5	60
02.11.2002 г.	2.82 N	96.09 E	30	7.4	4.8	65	4.2	40
26.12.2004 г.	3.30 N	95.98 E	30	9.0	5.5	700	5.5	200
28.03.2005 г.	2.09 N	97.11 E	30	8.6	5.0	190	5.0	180
12.09.2007 г.	4.44 S	101.37 E	34	8.5	5.0	290	5.0	100
12.09.2007 г.	2.63 S	100.84 E	35	7.9	5.0	150	5.0	160
13.09.2007 г.	2.13 S	99.63 E	22	7.0	4.5	85	4.0	40
20.02.2008 г.	2.77 N	95.96 E	26	7.3	4.8	35	4.5	30
25.02.2008 г.	2.49 S	99.97 E	25	7.2	4.5	60	4.5	60
	-	-	-					

Таблица 1. Параметры кольцевых структур, сформировавшихся перед сильными землетрясениями в районе Суматры

Примечание. L и l – большие оси соответственно мелкого и глубокого колец.

Таблица 2. Параметры кольцевых структур в зонах сейсмических брешей

Зона	Широта	Долгота	L, км	<i>l</i> , км	M_w	$M_{\pi 1}$	$M_{\Pi 2}$	$\Delta M_{\pi 1}$	$\Delta M_{\Pi 2}$
1	1° S–1° N	97°-99° E	170	95	8.1 ± 0.1	5.3	5.1	0.3	0.3
2	6.5–4.5 S	101.5–103.5 E	130	100	8.0 ± 0.2	5.5	5.5	0.5	0.7
3	7.5–5.5 S	102.5–105.0 E	160	110	8.2 ± 0.2	5.3	5.3	0.3	0.4

табл. 1). Существенно, что в 9 случаях эпицентры главных событий находились вблизи областей пересечения или наибольшего сближения мелких и глубоких колец. Единственное исключение — землетрясение 12.09.2007 г. ($M_w = 7.9$), эпицентр которого располагался на расстоянии $\Delta r \sim 50$ км от области пересечения колец.

Интересно, что кольцевые структуры выделены также в зонах сейсмических брешей в районах центральной и южной Суматры, где не было сильных землетрясений с $M \ge 7.8$ по крайней мере с 1935 г. [3] (рис. 2, табл. 2). Из табл. 2 следует, что величины *L* и /для колец в этих зонах варьируются соответственно в пределах 130–170 и 95–110 км, а параметры M_{n1} и $M_{n2} - 5.3 - 5.5$ и 5.1–5.5.

Из рисунка 2 видно, что мелкие и глубокие кольца для разных событий практически касаются друг друга или пересекаются. Кольца, сформировавшиеся перед сильнейшими землетрясениями с $M_w \ge 7.9$, а также в зонах сейсмических брешей, заполняют почти всю полосу между 7°N и 7°S. Единственное исключение — область между 1° и 2° S, где пока не удалось выявить пары колец с M_{n1} , $M_{n2} \ge 5.0$.

На рисунке 3 представлен график $\lg L(M_w)$, построенный по данным, полученным для района Суматры. Наблюдается линейная зависимость размеров мелких колец от магнитуды. Уравнение линейной регрессии имеет вид

$$\lg L(\kappa M) = 0.51 M_w - 1.88, \quad r = 0.91, \tag{1}$$

где *r* — коэффициент корреляции. Для величин *l* получена следующая зависимость:

$$\lg l(\kappa M) = 0.37 M_w - 1.04, \quad r = 0.86.$$
 (2)

Отметим, что величины L растут с магнитудой

гораздо быстрее, чем *l*. Отношения $\frac{L}{l}$ по данным

для 10 событий варьируются в диапазоне 0.9–3.5, в среднем эта величина равна 1.8 ± 0.8 . Существует тенденция роста данного параметра с M_w (на фоне большого разброса данных).

По данным для 9 событий (за исключением землетрясения 04.06.2000 г.) наблюдаются также линейные зависимости пороговых значений магнитуд для мелких и глубоких колец от M_w . Уравнения линейной регрессии имеют вид

$$M_{\pi 1} = 1.92 + 0.38 M_w, \quad r = 0.90, \tag{3}$$

$$M_{\rm n2} = -0.02 + 0.60 M_w, \quad r = 0.92. \tag{4}$$

Из этих зависимостей явно выпадают данные для землетрясения 04.06.2000 г. — величины $M_{п1}$ и M_{n2} для него выше средних значений для $M_w = 7.9$ соответственно на 0.58 и 0.78. Для сравнения укажем, что стандартные отклонения данных величин по 9 событиям равны соответственно 0.14 и

Рис. 1. Кольцевая сейсмичность перед Суматринским землетрясением 13.02.2001 г. а – глубины 0–33 км; *1*, 2 – эпицентры землетрясений с 4.8 $\leq M < 6.0$ (*1*), $M \geq 6.0$ (*2*), 3 – мелкое кольцо, 4 – эпицентр события 13.02.2001 г. 6 – глубины 34–70 км; *1*, 2 – эпицентры землетрясений с 4.5 $\leq M < 6.0$ (*1*), $M \geq 6.0$ (*2*), 3 – глубокое кольцо.

0.19. Отсюда следует, что данные для этого землетрясения выходят за пределы интервалов 4σ.

Выделение колец в зонах сейсмических брешей (рис. 2) позволяет выдвинуть гипотезу, что здесь готовятся очаги новых сильных землетрясений. С помощью формул (1), (2) можно оценить возможные магнитуды этих событий (табл. 2). Для трех рассмотренных зон (с севера на юг) соответственно получаем $M_w = 8.1$, 8.0 и 8.2. Зная эти величины, по формулам (3) и (4) можно найти

Рис. 2. Характеристики кольцевой сейсмичности перед сильнейшими землетрясениями в районе Суматры: *1*, *2* – кольца сейсмичности: *1* – мелкие, *2* – глубокие; *3*–*5* – эпицентры сильных и сильнейших землетрясений: *M* = 7.0–7.4, 4 (*3*), *M* = 7.9 (*4*), *M* = 8.5–9.0 (*5*). Стрелками отмечены кольца, соответствующие данным землетрясениям. Кольца без стрелок соответствуют зонам сейсмических брешей.

прогнозные значения M_{n1} и M_{n2} и отклонения от них реальных величин (ΔM_{n1} и ΔM_{n2}). Из табл. 2 следует, что наибольшие величины ΔM_{n1} и ΔM_{n2} (соответственно 0.5 и 0.7) получены для второй зоны, расположенной в районе южной Суматры.

Новые данные подтверждают на большем материале сделанный в [1, 2] вывод о приуроченности эпицентров большинства сильных землетрясений в зонах субдукции к областям пересечения или наибольшего сближения мелких и глубоких колец. (Максимальное удаление эпицентра главного события от области пересечения колец соответствует землетрясению 12.09.2007 г. (M = 7.9), однако и в этом случае выполняются соотноше-

ния
$$\frac{\Delta r}{L} \ll 1, \frac{\Delta r}{l} \ll 1.$$
) Как отмечено ранее, этот эф-

фект, скорее всего, объясняется подъемом глубинных флюидов по границам колец, что приводит к большей мощности двухфазного слоя с сообщающимися порами в таких областях и к концентрации напряжений на его кровле [1, 2]. В последнее время получены данные, которые могут свидетельствовать о том, что флюиды в зонах субдукции поднимаются в основном по разрывам, формирующимся при землетрясениях [4].

Из [1, 2] следует, что при обобщении данных для различных зон субдукции не удалось выявить четкой зависимости размеров колец от магниту-

ДОКЛАДЫ АКАДЕМИИ НАУК том 429 № 1 2009

ды. Вместе с тем для района Суматры получены линейные зависимости размеров колец от магнитуды с достаточно высокими коэффициентами корреляции. Сопоставление с приведенными в [1, 2] данными показывает, что для других районов, скорее всего, должны наблюдаться иные зависимости.

Резкое завышение величин M_{π^1} и M_{π^2} для землетрясения 04.06.2000 г., на наш взгляд, может быть связано со следующими обстоятельствами. Судя по полученным в последние годы данным [5, 6], в процессах подготовки сильных землетрясений одинаково важную роль играют поле напряжений в литосфере и содержание флюидов в будущей очаговой области, существенно уменьшающих трение на формирующемся разрыве. Последнее сильное землетрясение с магнитудой $M_w > 7.5$ ранее 2000 г. в районе Суматры произошло еще в 1935 г. ($M_w = 7.8$) [4]. Отсюда следует, что землетрясение 04.06.2000 г. было независимым событием, для осуществления подвижки в очаге которого требовалось относительно высокое содержание флюидов на границе погружающейся литосферной плиты. Это требование и было выполнено благодаря достаточно высоким величинам пороговых магнитуд (можно полагать, что увеличение размеров очагов событий в районах кольцевых структур обеспечивает возрастание суммарного объема поднимающихся по ним флюидов). В то же время после землетрясения 04.06.2000 г. произошло перераспределение напряжений в окружающих районах, связанное с их увеличением в очаговых зонах сильных событий, произошедших в 2001–2008 гг. (табл. 1) [3]. В связи с этим для осуществления подвижек при этих землетрясениях потребовалось меньшее содержание флюидов и, следовательно, меньшие величины M_{n1} и M_{n2} в районах кольцевых структур.

Оценки величин ΔM_{n1} и ΔM_{n2} , полученные для зон сейсмических брешей, позволяют предполагать, что процесс подготовки сильного землетрясения зашел дальше всего во второй зоне (приблизительно между 4.5° и 6° S).

Как известно, очаги сильных землетрясений в зонах субдукции обычно соответствуют актам скольжения сегментов погружающихся океанических плит, в то же время кольцевые структуры – дегидратации материала этих плит, приводящей к подъему мантийных флюидов [5–7]. Кольца сейсмичности, формирующиеся перед сильными землетрясениями, – одно из проявлений самоорганизации геодинамических процессов, образования так называемых диссипативных структур,

Рис. 3. Зависимость $\lg L$ от M_w для района Суматры.

которые, как известно [8], могут существовать вдали от равновесия только при наличии достаточно больших потоков вещества и энергии. Поднимающиеся из верхов мантии разогретые до нескольких сотен градусов Цельсия флюиды и обеспечивают существование этих потоков.

Полученные результаты могут быть использованы для целей сейсмического районирования и среднесрочного прогноза землетрясений в различных зонах субдукции и прежде всего в тех районах, где давно не было сильных землетрясений с $M \ge 7.5$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Копничев Ю.Ф., Соколова И.Н. // ДАН. 2009. Т. 425. № 4. С. 539—542.
- Копничев Ю.Ф., Соколова И.Н. // Вестн. НЯЦ РК. 2009. В. 1. С. 77–85.
- 3. Sorensen M., Atakan K. // EOS. 2008. V. 89. № 1. P. 133–134.
- Umeda K., McCrank G., Ninomiya A. // J. Geophys. Res. 2007. V. 112. B. 10206. doi: 10.1029/2007 JB005031.
- 5. Копничев Ю.Ф., Соколова И.Н. // ДАН. 2008. Т. 422. № 5. С. 672—676.
- Копничев Ю.Ф., Соколова И.Н. В сб.: Геодинамика внутриконтинентальных орогенов и геоэкологические проблемы. Бишкек, 2008. С. 331–335.
- Yamasaki T., Seno T. // J. Geophys. Res. 2003. V. 108. № B4. doi: 10.1029/2002JB001918.
- 8. *Николис Г., Пригожин И*. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с.