УДК 550.344

ПРОСТРАНСТВЕННО-ВРЕМЕННЫЕ ВАРИАЦИИ ПОЛЯ ПОГЛОЩЕНИЯ S-ВОЛН В ОЧАГОВЫХ ЗОНАХ СИЛЬНЫХ И СИЛЬНЕЙШИХ ЗЕМЛЕТРЯСЕНИЙ

¹⁾Копничев Ю.Ф., ²⁾Гордиенко Д.Д., ²⁾Соколова И.Н.

¹⁾Институт физики Земли им. О.Ю. Шмидта РАН, Москва, Россия ²⁾Институт геофизических исследований НЯЦ РК, Курчатов, Казахстан

Рассматриваются пространственно-временные вариации поля поглощения поперечных волн в очаговых зонах сильных и сильнейших землетрясений земного шара (M=7.0 - 9.0), произошедших в период 1897-2005 гг. Анализируется величина эффективной добротности Qs, определяемая по затуханию коды Lg на расстояниях порядка 350-600 км (для частоты 1.25 Гц) в двух интервалах времени t (от начала излучения в очаге): первом - сразу после группы Lg, t=180-250c (Q₁₈₀), втором - при t=250-400c (Q₂₅₀). Установлено, что параметр Q₁₈₀/Q₂₅₀ резко возрастает, если после сильного землетрясения время становится больше 15 лет. Совокупность полученных данных позволяет считать, что выявленный эффект объясняется подъемом ювенильных флюидов из верхов мантии (h≤200 км) в земную кору.

Короткопериодные поперечные волны наиболее чувствительны к присутствию жидкой фазы, поэтому по их характеристикам можно изучать процессы миграции флюидов в земной коре и верхах мантии [1-3]. В настоящей работе рассматриваются пространственно-временные вариации поля поглощения S-волн в очаговых зонах ряда сильных и сильнейших землетрясений мира (с магнитудой М=7.0-9.0), произошедших в 1897-2005 гг. (таблица). Для сравнения исследованы характеристики поля поглощения в тех районах, в первую очередь, в Центральной Азии, где, начиная с 1900 г., не было сильных землетрясений с М≥6.5.

Землетрясение	Дата	j°	l°	М	Механизм	Q ₁₈₀	Q ₂₅₀	Станция
Гималайское	12.06.1897	26	91	8.7	надвиг	200	310	LSA
Кашгарское	22.08.1902	39.8	76.2	8.1	взброс	590	790	TLG
Кеминское	03.01.1911	42.8	77.3	8.2	взброс	675	790	MAKZ
Хайюаньское	16.12.1920	36.62	105.40	8.6	сдвиг	740	420	XAN
Гималайское	15.01.1934	27.55	87.09	8.3	надвиг	330	510	LSA
Суматринское	28.12.1935	0.00	98.25	7.5	сдвиг	250	275	BTDF
Ассамское	15.08.1950	28.38	96.76	8.7	сдвиг	845	340	LSA
Муйское	27.06.1957	56.20	116.59	7.6	сбрососдвиг	1130	710	BDN
Гоби-Алтайское	04.12.1957	45.31	99.21	8.1	взбрососдвиг	540	745	ULN
Невадское	18.08.1959	44.70	-110.80	7.5	сброс	540	575	DUG
Аляскинское	28.03.1964	61.10	-147.60	8.4	надвиг	310	360	COLA
Чилийское	28.12.1966	-25.50	-70.70	7.7	надвиг	250	370	LCO
Маркансуйское	11.08.1974	39.39	73.86	7.4	взбрососдвиг	280	385	GAR
Яванское	19.08.1977	-11.09	118.46	8.1	сброс	1300	410	KAPI
Жаланаш-Тюпское	24.03.1978	42.90	78.70	7.0	взбрососдвиг	490	745	MAKZ
Чилийское	03.03.1985	-33.13	-71.87	7.8	надвиг	295	490	LCO
Мексиканское	19.09.1985	18.14	-102.71	8.1	надвиг	205	350	UNM
Сусамырское	19.08.1992	42.10	73.60	7.3	взброс	270	630	AML
Индонезийское (Сулавеси)	01.01.1996	0.73	119.93	7.9	взбрососдвиг	260	510	KAPI
Куньлуньское	08.11.1997	35.07	87.32	7.8	сдвиг	125	320	LSA
Перуанское	23.06.2001	-16.26	-73.64	8.4	надвиг	150	360	NNA
Чуйское	27.09.2003	50.04	87.81	7.3	сдвиг	295	745	MKAR
Суматринское	26.12.2004	03.30	95.98	9.0	надвиг	240	420	PSI
Суматринское	28.03.2005	02.07	97.01	8.7	взбрососдвиг	210	470	PSI

Таблица. Величины Q_{180} и Q_{250} для разных очаговых зон

Данные

Обработано более 250 сейсмограмм коровых землетрясений, полученных 30 цифровыми и одной аналоговой (BDN) станциями на эпицентральных расстояниях ~350-600 км. Неоднородности поля поглощения наиболее ярко проявляются на частотах около 1 Гц [1,2,4], поэтому производилась предварительная частотная фильтрация записей. Использовался фильтр с центральной частотой 1.25 Гц и шириной пропускания 2/3 октавы на уровне 0.7 от максимума сигнала, аналогичный соответствующему ЧИСС-фильтру [5].

Метод

Рассматривались огибающие Lg –коды записей сравнительно слабых землетрясений (как правило, M<5.5). Как показано в [5, 6], на частотах ~1 Гц кода волны Lg сформирована в основном S-волнами, отраженными от многочисленных субгоризонтальных

границ в верхней мантии. С ростом времени t, прошедшего от начала излучения, в коде приходят волны, падающие на границу Мохо (М) все более круто, и проникающие на большие глубины в верхней мантии. На рисунке 1 показана схема распространения лучей, формирующих коду Lg. Луч I представляет головную волну, распространяющуюся вдоль границы М. Позже приходят S-волны, отраженные от различных границ в верхней мантии. Если в области очага в верхах мантии существует зона относительно слабого (сильного) поглошения, то это приводит к сравнительно медленному (быстрому) затуханию амплитуд в начальной части коды Lg (лучи II и III). После луча III приходят S-волны, проникающие в область «нормального» (для данного диапазона глубин) поглощения. Это обеспечивает соответственно резкое увеличение или уменьшение скорости затухания амплитуд в коде.

 область в верхах мантии с поглощением, резко изменяющимся во времени; 2 – область «нормального» поглощения волн

Рисунок 1. Схема распространения лучей, формирующих коду Lg

Эффективная добротность определялась по формуле Ac(t) ~exp(- $\pi t/QsT$)/t (T – период колебаний) [5] в двух интервалах времени: первом - сразу после группы Lg, длительностью 70 с (чаще всего t=180-250 с) и втором - при t =250-400 с. Для краткости она обозначена как Q₁₈₀ и Q₂₅₀, соответственно. Оценки показывают, что для эпицентрального расстояния Δ =500 км при сносе лучей ~100 км S-волны в коде проникают на глубины ~140 км для t=180 с и ~210 км для t=250 с.

Анализ данных

На рисунке 2 показаны примеры записей двух землетрясений: из очаговой зоны Ассамского землетрясения 1950 г., сильнейшего в Центральной Азии за последние 100 лет [7], и из района к юго-западу от нее. Эпицентры обоих событий находятся в Гималаях. События произошли примерно на одинаковом расстоянии от зарегистрировавшей их станции LSA (470 и 480 км).

верхняя - район к юго-западу от очага Ассамского землетрясения (08.08.1992, 25.39 N 91.91E, h=49 км, Δ =480 км); нижняя – очаговая зона Ассамского землетрясения 1950 г. (08.05.1993, 28.73 N 95.87 E, h=33 км, Δ =470 км)

Рисунок 2. Примеры сейсмограмм землетрясений Гималаев

Видно, что в интервале времени длительностью ~ 70 с после волны Lg кода затухает гораздо медленнее в очаговой зоне. На рисунке За представлены примеры огибающих коды записей землетрясений, произошедших через относительно небольшие интервалы времени (до 12 лет) для четырех сильных землетрясений: Суматринского 2005 г., Чуйского 2003 г. (Алтай), Сусамырского 1992 г. (Северный Тянь-Шань), Перуанского 2001г. Землетрясения имели разные типы подвижек в очаге – взбрососдвиг, сдвиг, взброс и надвиг, соответственно.

Из рисунка За следует, что для всех огибающих в начальной части коды наблюдается участок относительно повышенного наклона. Наклон резко уменьшается в интервале 180-250 с. Иная картина наблюдается в тех районах, где рассматривались события, произошедшие через большие отрезки времени после сильных и сильнейших землетрясений. На рисунке 3б показаны огибающие коды для очаговых зон четырех сильных землетрясений: Муйского 1957 г. (сбрососдвиг), Ассамского (сдвиг), Кашгарского 1902 г. (взброс) и Гималайского 1934 г. (надвиг). Видно, что во всех случаях в начальной части коды затухание амплитуд гораздо слабее, чем на рисунке 3а. Особенно слабое затухание коды соответствует событиям с механизмами типа сбрососдвига и сдвига.

Величины эффективной добротности Q_{180} , как это можно видеть из таблицы, для разных очаговых зон варьируются значительно, в диапазоне 125-1300, а Q_{250} – гораздо слабее, от 275 до 790. Меньший разброс данных для величин Q_{250} не противоречит существующим представлениям об уменьшении степени неоднородности верхней мантии с глубиной [5]. Отметим, что минимальные величины Q_{180} наблюдаются для трасс станция LSA - эпицентры в Северном Тибете, что согласуется с имеющимися данными об очень сильном поглощении S-волн в земной коре и верхах мантии этого района [8]. Максимальные величины Q_{180} (740-1300) получены для очаговых зон Хайюаньского (1920), Ассамского (1950), Муйского (1957) и Яванского (1977) землетрясений.

Рисунок 3. Огибающие записей: а - афтершоков и землетрясений, произошедших с интервалом ДТ не более 12 лет после сильных землетрясений; б - местных событий, произошедших в очаговых зонах сильных и сильнейших землетрясений с интервалом ДТ более 20 лет

На рисунке 4 показана зависимость отношения Q_{180}/Q_{250} от времени ΔT , прошедшего после сильного землетрясения. Для сравнения на том же рисунке дана полоса разброса величин Q_{180}/Q_{250} для 25 трасс, на которых, начиная с 1900 г., не было зарегистрировано сильных землетрясений с М>6.5 (районы Казахской платформы, Тянь-Шаня, Пакистана, Тибета, Монголии и Прибайкалья, а также запада и востока США). Согласно данным, полученным по записям 18 цифровых станций, величины Q_{180}/Q_{250} для этих трасс в среднем равны 0.47±0.10 (при этом значения Q_{180} варьируются в диапазоне 145-480, а $Q_{250} - 350-980$).

Из рисунка 4 следует, что в интервале ΔT , не превышающем 15 лет, величины Q_{180}/Q_{250} находятся в пределах указанной полосы. При увеличении ΔT наблюдаются значительно более высокие величины Q_{180}/Q_{250} , варьирующиеся от 0.65 до 3.20. При этом наибольшие значения данного параметра (1.6-3.2),

выходящие за пределы интервала 10, соответствуют очаговым зонам Хайюаньского, Ассамского, Муйского и Яванского землетрясений. для которых определены максимальные величины Q₁₈₀ (таблица). Следует отметить, что при $\Delta T > 15$ лет для землетрясений с механизмами типа сдвига (Хайюаньского, Суматринского (1935) и Ассамского), сброса и сбрососдвига (Муйского, Невадского (1959) и Яванского (1977)) [7] наблюдаются гораздо более высокие значения Q₁₈₀/Q₂₅₀, чем для механизмов типа взброса, взбрососдвига и, особенно, надвига (в зоне Беньофа). К тому же самая большая величина Q₁₈₀/Q₂₅₀ для таких типов подвижек (0.86) получена для Великого Аляскинского землетрясения 1964 г., механизм которого, по-видимому, представлял более сложный очаг, чем простой надвиг [9]. Максимальные величины параметра Q₁₈₀/Q₂₅₀ получены для очаговых зон Яванского землетрясения, а также Ассамского землетрясения, имевшего наибольший сейсмический момент для

района Центральной Азии за последние 100 лет [7]. Для двух очаговых зон оценены величины Q_{180}/Q_{250} за несколько лет до соответствующих землетрясений (Суматра, 2004 и 2005). Оказалось, что для этих событий Q_{180}/Q_{250} равны 0.57 и 0.45, соответственно, т.е. находятся в пределах горизонтальной полосы значений (рисунок 4).

Рисунок 4. Зависимость величин Q_{180}/Q_{250} от времени ΔT , прошедшего после сильного землетрясения

ОБСУЖДЕНИЕ

Полученные данные показывают, что значения Q_{180}/Q_{250} в обычных условиях (вне очаговых зон), а также незадолго до и сразу после сильных землетрясений варьируются в сравнительно узком диапазоне, свидетельствуя о заметном уменьшении поглощения S-волн в верхней мантии с глубиной. Вместе с тем, очаговые зоны сильных и сильнейших землетрясений мира через 15-20 лет после этих событий характеризуются аномально высокими величинами Q_{180}/Q_{250} , что соответствует резкому уменьшению поглощения S-волн в верхней мантии на глубинах приблизительно до 200 км.

Увеличение добротности верхов мантии для поперечных волн за достаточно короткий (в геологических масштабах) период может быть связано только с процессами миграции флюидов. Проведенный анализ показывает, что после сильных и сильнейших землетрясений флюиды поднимаются из верхней мантии в земную кору. Это согласуется с выводами, сделанными ранее на основании анализа поля поглощения S-волн по коде местных землетрясений в районе Тянь-Шаня [2], и по результатам изучения временных вариаций отношения скоростей Р- и S-волн в очаговой зоне землетрясения в Антофагасте 1995 г. (Северное Чили, М=8.0) [3]. Об этом свидетельствует также очень сильное затухание волн Lg в очаговой зоне Чилийского землетрясения 1960 г., сильнейшего на планете за последние 100 лет (наши данные). О подъеме ювенильных флюидов говорит и присутствие мантийных изотопов гелия в очаговых зонах и их близких окрестностях [10].

Аномально высокие величины Q₁₈₀/Q₂₅₀ для сильнейших сбросов и сдвигов согласуются с заключением об очень больших объемах изливающейся на поверхность воды после сильных землетрясений с такого типа подвижками по сравнению со взбросами и надвигами [11]. Этот эффект, скорее всего, связан с очень высокой проницаемостью пород в областях сбросов и сдвигов. При сдвигах, хотя и в меньшей степени, чем при сбросах, формируются локальные зоны растяжения – кулисы, в которых, по-видимому, в основном и происходит подъем мантийных флюидов [12]. В то же время, в областях сжатия, с которыми связаны взбросы и надвиги, проницаемость пород для землетрясений соизмеримой энергии должна быть значительно меньше (в особенности для надвигов), что приводит к гораздо более слабой степени «осушения» верхов мантии.

Выводы

1. Изучены пространственно-временные вариации поля поглощения поперечных волн в очаговых зонах сильных и сильнейших землетрясений мира. Определялась эффективная добротность среды для S-волн по затуханию амплитуд в ранней (Q_{180}) и поздней (Q_{250}) коде Lg на расстояниях ~350-600 км. Первый параметр позволял оценить поглощение Sволн в верхах мантии, на глубинах до ~200 км, второй – использовался в основном для нормировки.

2. Установлено, что величины Q_{180}/Q_{250} в обычных условиях (в районах, где не было сильных землетрясений с М≥6.5 в течение последних 100 лет), варьируются в узком диапазоне (0.47±0.10), что отвечает резкому уменьшению поглощения волн в верхней мантии с глубиной. В этот же диапазон попадают величины параметра в районах, где поглощение оценивалось с запаздыванием ΔT <15 лет после сильных и сильнейших землетрясений.

3. Установлено, что при $\Delta T>15$ лет наблюдается резкое повышение величин Q_{180}/Q_{250} (до 1.6-3.2). Это свидетельствует о существенном уменьшении по-глощения волн в верхах мантии. Особенно высокие значения параметра Q_{180}/Q_{250} соответствуют землетрясениям с механизмами типа сброса и сдвига.

4. Обнаруженные эффекты интерпретируются как следствие подъема мантийных флюидов в земную кору после сильных землетрясений, что согласуется с другими геофизическими и геохимическими данными, полученными в последнее время.

Благодарность. Авторы выражают признательность консорциуму IRIS (USA) за предоставление данных мировой сети GSN [13].

Литература

- 1. Копничев Ю.Ф., Соколова И.Н. Пространственно-временные вариации структуры поля поглощения поперечных волн в районе Семипалатинского полигона//Физика Земли. 2001.- № 11. С. 73 86.
- 2. Копничев Ю.Ф., Соколова И.Н. Пространственно-временные вариации поля поглощения S-волн в очаговых зонах сильных землетрясений Тянь-Шаня//Физика Земли. 2003. № 7. С. 35 47.
- A. Koerner, E. Kissling, S. Miller. A model of deep crustal fluid flow following the Mw=8.0 Antofagasta, Chile, earthquake//J. Geophys. Res. 2004. V. 109, No B6. DOI 10.10291/2003JB002816.
- 3. O.I. Aptikaeva, Yu.F. Kopnichev. Spatio-temporal variations of the coda wave envelopes of local earthquakes in the region of Central Asia//J. Earthq. Predict. Res. 1993. V.2, No 4. P. 497 514.
- 4. Копничев Ю.Ф. Короткопериодные сейсмические волновые поля. М.: Наука, 1985. 176 с.
- 5. Каазик П.Б., Копничев Ю.Ф., Нерсесов И.Л., Рахматуллин М.Х. Анализ тонкой структуры короткопериодных
- сейсмических полей по группе станций//Физика Земли. 1990. № 4. С. 38 49.
- J. Pacheco, L. Sykes. Seismic moment catalog of large shallow earthquakes, 1900 to 1989//Bull. Seismol. Soc Amer. 1992. V. 82, No 3. - P. 130 - 1349.
- D. McNamara, T. Owens, W. Walter. Observations of regional phase propagation across the Tibetan plateau//J. Geophys. Res. -1995. - V. 100, No B11. P.22215-22229.
- W.-P.Chen, P. Molnar. Seismic moments of major earthquakes and the average rate of slip in Central Asia//J. Geophys. Res. -1997. - V. 82, N 20. - P. 2945 - 2969.
- 9. Копничев Ю.Ф., Соколова И.Н. Подъем мантийных флюидов в районах очагов сильных землетрясений и крупных разломных зон: геохимические свидетельства //Настоящий сборник.
- R. Muir-Wood, G. King. Hydrological signatures of earthquake strain//J. Geophys. Res. 1993. V. 98, No B12.- P. 22035 -22068.
- 11. Аптикаева О.И., Арефьев С.С., Кветинский С.И. и др. Неоднородности литосферы и астеносферы в очаговой зоне Рачинского землетрясения/Докл. РАН. 1995. Т. 344, № 4. С. 533 --538.
- R. Butler, T. Lay, K. Creager et al. The Global seismographic network surpasses its design goal//Eos, Transactions, AGU. 2004.
 V.85. No 23. P. 225 229.

АТТЫ ЖӘНЕ ӨТЕ ҚАТТЫ ЖЕРСІЛКІНУЛЕРДІҢ ОШАҚ БЕЛДЕМДЕРІНДЕ S-ТОЛҚЫНДАРЫНЫҢ ЖҰТЫЛУ ӨРІСІНІҢ КЕҢІСТІК-УАҚЫТТЫҚ ВАРИАЦИЯЛАРЫ

1)Копничев Ю.Ф.,2)Гордиенко Д.Д., 2)Соколова И.Н.

1) РҒА О.Ю. Шмидт атындағы Жер физикасының институты, Мәскеу, Ресей 2) ҚР ҰЯО Геофизикалық зерттеулер институты, Курчатов, Қазақстан

1897-2005 ж.ж. кезеңінде өткен жер шарының қатты және өте қатты жерсілкінулердің (М=7.0-9.0) ошақ белдемдерінде көлденең толқындардың жұтылу өрісінің кеңістік-уақыттық вариациялары қаралады. 350-600 км. қатарындағы қашықтықта (1,25 Гц. жиілігі үшін) t уақытының (ошақта сәулеленуі басталуынан) екі аралығында: бірінші - Lg тобынан кейін бірден, t=180-250 с (Q₁₈₀,), екіншісі - t=250-400 с (Q₂₅₀) болуында, Lg коды өшу бойынша анықталатын тиімді төзімділіктің (Qs) мөлшері талдануда. Егерде қатты жерсілкінуден кейін уақыт 15 жылдан көп болса Q₁₈₀/Q₂₅₀ параметрі шұғыл өсетіні белгіленген. Анықталған әсерін, ювенильді флюидтер мантияның жоғарынан (h≤200 км) жер қыртысына көтерілуімен түсіндіруге болады.

SPATIO-TEMPORAL VARIATIONS OF S WAVE ATTENUATION FIELD IN SOURCE ZONES OF LARGE AND GREAT EARTHQUAKES

1)Yu.F. Kopnichev, 2)D.D. Gordienko, 2)I.N. Sokolova

1)Institute of Earth Physics, Russian Academy of Sciences, Moscow, Russia 2)Institute of Geophysical Research NNC RK, Kurchatov, Kazakhstan

Spatio-temporal variations of shear wave attenuation field in the source zones of large and great earthquakes worldwide that happened in 1897-2005 (M=7.0-9.0) are being reviewed. We have been analyzing effective Qs values for Lg coda at distances of ~350-600 km (for frequency of 1.25 Hz) in two lapse time intervals): the first one – right after Lg wave, t=180-250 sec (Q_{180}) and the second one – when t=250-400 sec (Q_{250}). It was established that the parameter Q_{180}/Q_{250} abruptly increases when time after large earthquakes is more than 15 years. This effect can be explained by juvenile fluids ascent from the uppermost mantle (h≤200 km) into the earth's crust.